Дифракция света на щели. Дифракция фраунгофера. Влияние ширины цели на картинку дифракции. Дифракционная решетка. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Дифракция света на щели. Дифракция фраунгофера. Влияние ширины цели на картинку дифракции. Дифракционная решетка.



.Пусть на узкую щель шириной в непрозрачной плоскости нормально падает плоская волна с длиной волны (рис. 3.5). Поместим за плоскостью собирающую линзу , которая собирает все параллельные световые пучки в своей фокальной плоскости. Если разность хода между пучками и или и будет равна целому числу длин волн (т.е. , где ), то за счет интерференции на экране проявятся минимумы интенсивности, т.е. , (1), есть условие минимума. Угол называется углом дифракции.

При , т.е. центральный максимум занимает весь экран наблюдения, т.к. и дифракционная картина исчезает (ограничение сверху).

Фраунг о фера дифр а кция, дифракция слабо расходящегося (практически параллельного) пучка лучей света на неоднородности (например, отверстии), размер которой много меньше диаметра первой из зон Френеля.В спектральных приборах высокого класса вместо призм применяются дифракционные решетк и. Решетки представляют собой периодические структуры, выгравированные специальной делительной машиной на поверхности стеклянной или металлической пластинки

Простейшая дифракционная решетка состоит из прозрачных участков (щелей), разделенных непрозрачными промежутками. На решетку с помощью коллиматора направляется параллельный пучок исследуемого света. Наблюдение ведется в фокальной плоскости линзы, установленной за решеткой

Для того, чтобы в точке P наблюдался интерференционный максимум, разность хода Δ между волнами, испущенными соседними щелями, должна быть равна целому числу длин волн:

Δ = d sin θm = mλ (m = 0, ±1, ±2,...).

В фокальной плоскости линзы расстояние ym от максимума нулевого порядка (m = 0) до максимума m-го порядка при малых углах дифракции равно

21.Дисперсия света – зависимость абсолютного показателя преломления вещества n от частоты ν падающего на вещество света. Дисперсия также определяется как зависимость фазовой скорости света в среде от его частоты.

Нормальная дисперсия происходит с лучами света, длина волны которых далека от области поглощения волн данным веществом. Аномальная дисперсия наблюдается только в области поглощения. Групповая скорость — это кинематическая характеристика диспергирующей волновой среды, обычно интерпретируемая как скорость перемещения максимума амплитудной огибающей узкого квазимонохроматического волнового пакета (цуга волн). Групповая скорость определяет скорость переноса энергии квазисинусоидальной волной.Для одномерных волн эта скорость вычисляется из закона дисперсии:

где ω — угловая частота, k — волновое число. Групповая скорость плоских и пространственных волн с дисперсией определяется градиентом по волновому вектору :

 

Классическая электронная теория дисперсии света учитывает нелокальность явлений во времени и пространстве.

Из макроскопической электромагнитной теории Максвелла следует, что абсолютный показатель преломления среды

где  — диэлектрическая проницаемость среды,  — магнитная проницаемость. В оп­тической области спектра для всех веществ 1, поэтому

(186.1)

Из формулы (186.1) выявляются некоторые противоречия с опытом: величина n, являясь переменной, остается в то же время равной определенной постоянной . Кроме того, значения n, получаемые из этого выражения, не согласуются с опытными значениями. Трудности объяснения дисперсии света с точки зрения электромагнитной теории Максвелла устраняются электронной теорией Лоренца. В теории Лоренца дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.

Если в веществе имеются различные заряды еi, совершающие вынужденные колебания с различными собственными частотами 0 i, то

(186.9)

где т, — масса i- го заряда.

Область АВ — область аномальной дисперсии (n убывает при возрастании ), остальные участки зависимости n от описывают нормальную дисперсию (n возрастает с возрастанием ).

Показатель преломления зависит от оптических свойств и той среды, из которой луч падает, и той среды, в которую он проникает. Показатель преломления, полученный в том случае, когда свет из вакуума падает на какую-либо среду, называется абсолютным показателем преломления данной среды.

показатель преломления n при переходе из первой среды во вторую, так называемый относительный показатель преломления, равен отношению абсолютных показателей преломления второй и первой сред:

22.Дисперсия света. Нормальная и аномальная дисперсия. Групповая скорость. Классическая электронная теория дисперсии света. Показатель преломления вещества.

Поляризация света – процесс упорядочения колебаний вектора напряжённости электрического поля световой волны при прохождении света сквозь некоторые вещества (при преломлении) или при отражении светового потока.

Поляризатор – вещество (или устройство) служащее для преобразования естественного света в плоскополяризованный.

Плоскость поляризации – плоскость, проходящая через направление колебаний светового вектора плоскополяризованной волны и направление распространения этой волны.

Свет со всевозможными равновероятными ориентациями вектора Е (и, следовательно, Н) называется естественным.

Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным.

Так, если в результате каких-либо внешних воздействий появляется преимущественное (но не исключительное!) направление колебаний вектора Е (рис. 272, б), то имеем дело с частично поляризованным светом.

Свет, в котором вектор Е (и, следовательно, Н) колеблется только в одном направлении, перпендикулярном лучу (рис. 272, в), называется плоскополяризованным (линейно поляризованным).

Степенью поляризации называется величина

где Imax и Imin, - соответственно максимальная и минимальная интенсивности частично поляризованного света, пропускаемого анализатором. Для естественного света Imax = Imin и Р = 0, для плоскополяризованного Imin = 0 и Р = 1.

Закон Малюса — зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.

где I 0 — интенсивность падающего на поляризатор света, I — интенсивность света, выходящего из поляризатора, ka - коэффициент прозрачности поляризатора.

Если естественный свет падает на границу раздела двух диэлектриков (например, воздуха и стекла), то часть его отражается, а часть преломляется в распространяется во второй среде. Устанавливая на пути отраженного и преломленного лучей анализатор (например, турмалин), убеждаемся в том, что отраженный и преломленный лучи частично поляризованы: при поворачивании анализатора вокруг лучей интенсивность света периодически усаливается и ослабевает (полного гашения не наблюдается!).

Закон Брюстера — закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называется углом Брюстера

Закон Брюстера: , где n 21 — показатель преломления второй среды относительно первой, θ Br — угол падения (угол Брюстера).

Стопа Столетова

Стопа столетова из полимерных пластинок. ф(Б)- угол брюстера.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 299; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.147.190 (0.01 с.)