Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Кафедра геологии и геоморфологии↑ Стр 1 из 23Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Кафедра геологии и геоморфологии МАТЕРИАЛЫ ЛЕКЦИЙ ПО ГЕОМОРФОЛОГИИ Подготовил преподаватель кафедры геологии и геоморфологии к.г.н. Крицкая Оксана Юрьевна ЛЕКЦИЯ 1. ГЕОМОРФОЛОГИЯ КАК НАУКА. ОБЪЕКТ ЕЕ ИЗУЧЕНИЯ. ИСТОРИЯ ГЕОМОРФОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ. МЕТОДЫ ГЕОМОРФОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ. Геоморфология — наука о строении, происхождении, истории развития и современной динамике рельефа земной поверхности. Следовательно, объектом изучения геоморфологии является рельеф, т. е. совокупность неровностей земной поверхности, разных по форме, размерам, происхождению, возрасту и истории развития. Рельеф поверхности Земли—это комплекс форм, которые имеют определенное геологическое строение и подвержены постоянному воздействию атмосферы, гидросферы и внутренних сил Земли. Поэтому изучение рельефа невозможно как без четкого представления о составе и свойствах слагающих его горных пород, так и без знания воздействующих на него процессов. Земная кора, верхняя часть которой образует рельеф, не является чем-то неизменным. Она подвержена не только воздействию сил, обусловленных процессами, протекающими в атмосфере и гидросфере, но и является продуктом глубинных (эндогенных) процессов, протекающих в недрах Земли, испытывает многообразные изменения и движения, происходящие под воздействием этих процессов. Земная кора состоит из магматических, осадочных и метаморфических горных пород, которые по-разному реагируют на воздействие внешних и внутренних сил. В. И. Вернадским введено в науку о Земле понятие «биосфера». Под биосферой понимается вся совокупность органической жизни Земли. Эта оболочка как бы пронизывает нижнюю часть атмосферы, гидросферу и приповерхностную часть земной коры. Составляющие ее живые организмы и мертвая органическая материя самым активным образом участвуют в формировании рельефа Земли либо непосредственно, создавая специфические биогенные формы рельефа и геологические тела, либо опосредованно, изменяя физические и химические свойства горных пород, воздушной и водной оболочек нашей планеты. Наконец, сам рельеф Земли, представляющий совокупность поверхностей то почти горизонтальных, то имеющих значительные уклоны, влияет на ход геоморфологических процессов. Так, в горах и на низменных равнинах эти процессы протекают по-разному. Гипсометрия рельефа, т. е. положение того или иного участка земной поверхности относительно уровня моря, также влияет на рельефообразование, нередко обусловливая проявление таких процессов, которые не могут происходить на другом гипсометрическом уровне. Например, при современных климатических условиях ледники в умеренных, тропических и экваториальном поясах могут возникнуть только в высоких горах; ряд процессов возможен только на дне глубоких морских и океанических впадин и т. д. На основе сказанного можно уточнить понятие «рельеф». Рельеф земной поверхности, являющийся объектом изучения геоморфологии, представляет собой совокупность геометрических форм этой поверхности, образующихся в результате сложного взаимодействия земной коры с водной, воздушной и биологической оболочками нашей планеты. Поскольку в этом взаимодействии участвует земная кора и речь идет о неровностях ее поверхности, изучение рельефа немыслимо без знания внутреннего строения образующих его форм. При всей сложности взаимодействия и разнообразия рельефообразующих процессов в них всегда участвует как одна из важнейших составляющих сила тяжести, сила земного притяжения. Хотя движение масс в направлении, противоположном действию вектора силы тяжести, также возможно и оно происходит, но при этом движение масс всегда должно преодолевать силу тяжести. Поэтому для геоморфологии одной из важнейших характеристик рельефа является уклон поверхности. Кроме того, сила земного притяжения, интенсивность проявления внешних агентов и их «набор» определяются гипсометрией рельефа. Общий облик рельефа и характер рельефообразующих процессов зависят также от частоты смены положительных и отрицательных форм рельефа, степени их контрастности и географического положения того или иного участка земной поверхности. Наконец, рельеф испытывает существенные изменения в результате разнообразной хозяйственной деятельности человека. Таким образом, рельеф является одновременно продуктом геологического развития и компонентом (составной частью) географического ландшафта. Само положение объекта изучения геоморфологии определяет необходимость ее самых тесных связей с такими науками, как геология и физическая география. Следует подчеркнуть, что рельеф занимает в строении Земли особое место, являясь поверхностью раздела и одновременно поверхностью взаимодействия различных оболочек земного шара: литосферы, атмосферы, гидросферы и биосферы. Вместе с тем рельеф—составная часть географической среды. Поэтому наиболее плодотворным изучение рельефа и законов его развития может быть только при изучении его во взаимодействии и взаимообусловленности со всеми другими компонентами географической среды. Этим и определяется особо тесная связь геоморфологии с физической географией и другими науками географического цикла. Геоморфология—наука историческая. Она стремится установить последовательность происходивших на Земле событий, приведших к формированию современного рельефа. В познании рельефа геоморфология использует достижения не только географии и геологии, но и многих других наук естественно-исторического цикла. Например, поскольку Земля является планетой, геоморфология использует данные таких наук, как астрономия и космогония. В вопросах познания строения, состава и состояния вещества, участвующего в строении тех или иных форм рельефа, геоморфология использует достижения физики и химии и т. д. Итак, геоморфология изучает строение, происхождение, историю развития и динамику рельефа земной поверхности. Цель этого изучения—познание законов развития рельефа и использование выявленных закономерностей в практической деятельности человеческого общества. Методы геоморфологических исследований Морфографический метод. Заключается в объективной характеристике рельефа земной поверхности с помощью текстового описания или изображения. Морфометрический метод. Дает количественную характеристику рельефа. При этом используются как данные инструментальных измерений на местности, так и различные изображения рельефа на картах, АФС. Часто сведения по морфометрии рельефа оформляются в виде специальных морфометрических карт. Морфоструктурный метод. Его основу составляет изучение соотношений между рельефом и геологическими структурами. Так, например, этот метод позволяет выявить различные разрывные нарушения и другие структурные элементы при изучении различных форм рельефа. Очень широко сейчас применяются палеогеоморфологические методы, которые заключаются в исследовании истории развития рельефа с помощью изучения погребенного рельефа, анализа соотношений форм рельефа и кореллятных отложений и т.д. Эти методы сочетаются с различными геологическими методами, такими как гранулометрический и литолого-минералогичесикй анализ, определение абсолютного возраста по изотопам углерода, урана, тория, кислорода. Для изучения внутреннего строения земной коры применяются различные геофизические методы. ЛЕКЦИЯ 2. ОБЩИЕ СВЕДЕНИЯ О РЕЛЬЕФЕ. МОРФОМЕТРИЯ И МОРФОГРАФИЯ РЕЛЬЕФА. ЛЕКЦИЯ 3. ВОЗРАСТ И ГЕНЕЗИС РЕЛЬЕФА. ФАКТОРЫ РЕЛЬЕФООБРАЗОВАНИЯ. Генезис рельефа. Главное исходное положение современной геоморфологии — представление о том, что рельеф формируется в результате взаимодействия эндогенных и экзогенных процессов. Однако этот тезис должен быть детализирован при рассмотрении конкретных форм или комплексов форм рельефа. Как говорилось ранее, наиболее крупные формы рельефа имеют эндогенное происхождение, а более мелкие — экзогенное. Экзогенные процессы в ходе своей деятельности либо усложняют, либо упрощают рельеф эндогенного происхождения. В одних случаях экзогенные агенты вырабатывают более мелкие мезо- -и микроформы, в других — срезают неровности, созданные эндогенными процессами, в третьих — происходит погребение или усложнение эндогенного рельефа за счет образования различных аккумулятивных форм. Характер воздействия экзогенных агентов на рельеф эндогенного происхождения в значительной мере определяется тенденцией развития рельефа, т. е. тем, являются ли господствующими восходящие (положительные) движения земной коры или нисходящие (отрицательные) движения. По существующим представлениям основным источником энергии эндогенных рельефообразующих процессов является тепловая энергия, продуцируемая главным образом гравитационной дифференциацией и радиоактивным распадом вещества недр Земли. Гравитация и радиоактивность, разогрев и последующее охлаждение недр Земли неизбежно ведут к изменениям объема масс вещества, слагающего мантию и земную кору. Расширение земного вещества в ходе нагревания приводит к возникновению восходящих вертикальных движений как в мантии, так и в земной коре. Земная кора реагирует на них либо деформациями без разрыва пластов (образованием пликативных дислокаций), либо разрывами и перемещением ограниченных разрывами блоков земной коры (дизъюнктивные дислокации). Разрывы могут проникать в толщу коры, проходить сквозь нее и достигать очагов плавления пород. Тогда гигантские трещины превращаются в каналы, по которым расплавленное вещество— магма— устремляется вверх. Если магма не достигает поверхности Земли и застывает в толще земной коры, образуются интрузивные тела. Возникновение крупных интрузий неизбежно ведет к механическому перемещению вверх толщ перекрывающих их пород, т. е. способствует образованию пликативных или дизъюнктивных нарушений. Внедряющиеся магматические породы оказывают также динамическое, термическое и химическое воздействие на осадочные породы, которые в результате такого воздействия превращаются в метаморфические породы. Излияние расплавленного материала на поверхность, сопровождаемое выбросами паров воды и газов, получило название эффузивного магматизма или вулканизма. Образование разрывов в земной коре, мгновенные перемещения масс в недрах Земли сопровождаются резкими толчками, которые на поверхности Земли проявляются в виде землятрясений. Землетрясения—это одно из наиболее заметных простому наблюдателю проявлений современных тектонических процессов, протекающих в недрах Земли. Главный источник энергии экзогенных процессов—лучистая энергия Солнца, трансформируемая на земной поверхности в энергию движения воды, воздуха, вещества литосферы. К числу экзогенных процессов относятся рельефообразующая деятельность поверхностных текучих вод и водных масс океанов, морей, озер, растворяющая деятельность поверхностных и подземных вод, а также деятельность ветра и льда. Во всех этих процессах принимает участие гравитационная энергия, и поэтому названные процессы не являются чисто экзогенными. Существует целая группа процессов, протекающих на склонах и получивших наименование склоновых. Наконец, есть еще две группы процессов, которые также можно отнести к экзогенным геоморфологическим процессам: рельефообразующая деятельность организмов и хозяйственная деятельность человека, роль которой как фактора рельефообразования по мере развития техники становится все более значительной. Перечисленные рельефообразующие процессы лишь в редких случаях протекают обособленно. Нечасто мы можем сказать, что та или иная форма рельефа образовалась и развивается в настоящее время под действием лишь одного какого-либо процесса. При определении генезиса рельефа геоморфолог всегда или почти всегда сталкивается с вопросом, какому геоморфологическому процессу следует отдать предпочтение, какой из них следует считать ведущим и в наибольшей степени определяющим генезис рельефа. Трудности генетического анализа могут быть систематизированы в виде следующего перечня: 1. Рельеф Земли, как было отмечено выше, есть результат взаимодействия эндогенных и экзогенных процессов. Однако такой ответ является слишком общим и нуждается в конкретизации в каждом отдельном случае. На первом этапе необходимо выяснить, какая группа процессов в данном случае превалирует. Это нелегкая задача, потому что, как показывают наблюдения, интенсивность эндогенных и экзогенных процессов в целом соизмерима. 2. Нередко можно наблюдать, что рельеф, созданный в недавнем прошлом под воздействием одних агентов, в настоящее время подвержен воздействию других. 3. Часто встречаются случаи, когда рельеф формируется за счет совокупного влияния нескольких процессов, действующих примерно с одинаковой степенью интенсивности и дающих примерно равноценные результаты. 4. При выявлении генезиса форм рельефа разного порядка нередко приходится наблюдать такое явление: крупная форма в целом обусловлена деятельностью эндогенных процессов, а мелкие формы на ее склонах представляют результат деятельности экзогенных процессов. В этом случае, очевидно, вопрос о генезисе рельефа может решаться в зависимости от того, с какой формой рельефа мы имеем дело. Перечисленные трудности в большинстве случаев преодолимы. Прежде всего, если решается вопрос о планетарных или мегаформах рельефа, то, несомненно, они в своих главных чертах связаны с эндогенными процессами. Это можно сказать (с некоторыми исключениями) и о макрорельефе. Морфология мезоформ лишь в отдельных, довольно редких случаях бывает целиком определена тектоническим процессом и не изменена экзогенными агентами. Мезоформы и более мелкие формы рельефа в подавляющем большинстве случаев оказываются связанными с экзогенными процессами, хотя проявление их в той или иной геологической обстановке может быть существенно различным. При этом в качестве ведущего процесса выделяется тот, который придал основные черты данной форме или данному комплексу форм рельефа, даже если в настоящий момент этот процесс перестал действовать. Для примера можно привести ледниково-аккумулятивный рельеф областей недавнего (позднеплей-стоценового) оледенения, четвертичные морские или речные террасы. В настоящий момент эти ледниковые, прибрежно-морские или флювиальные формы подвержены воздействию других процессов, но они еще в достаточной мере сохранили те морфологические черты, которые им придали недавно действовавшие процессы. В тех случаях, когда в образовании той или иной формы или группы форм одновременно участвуют не один, а два или несколько факторов, вполне соизмеримых по своему морфологическому значению, следует говорить о сложном, комплексном происхождении рельефа. Возраст рельефа. Важной задачей геоморфологии наряду с изучением морфографии, морфометрии и генезиса является выяснение возраста рельефа. Как известно, в геологии возраст пород представляет одну из важнейших геологических характеристик, и он, по существу, составляет основное содержание общих геологических карт. Геологический возраст пород определяется с помощью хорошо разработанных стратиграфического, палеонтологического и петрографического методов, которые в последнее время все чаще подкрепляются методами абсолютной геохронологии. В геоморфологии определение возраста — задача более сложная, так как геологические методы применимы лишь для аккумулятивных форм рельефа и не могут быть использованы непосредственно для определения возраста выработанного (денудационного) рельефа. В геоморфологии, как и в геологии, обычно используют понятия «относительный» и «абсолютный» возраст рельефа. Относительный возраст рельефа. Понятие «относительный возраст рельефа» в геоморфологии имеет несколько аспектов. 1. Развитие рельефа какой-либо территории или какой-либо отдельно взятой формы, как показал В. Девис, является стадийным процессом. Поэтому под относительным возрастом рельефа можно понимать определение стадии его развития. В качестве примера можно проследить развитие речных долин. Следовательно, один из аспектов определения относительного возраста рельефа—это определение стадии его развития по комплексу характерных морфологических и динамических признаков. 2. Понятие «относительный возраст рельефа» применяется также при изучении взаимоотношений одних форм с другими. В общем случае любая форма является более древней по отношению к тем, которые осложняют ее поверхность и сформировались в более позднее время. 3. Определение относительного геологического возраста рельефа означает установление того отрезка времени, когда рельеф приобрел черты, в основном аналогичные его современному облику. Если речь идет об аккумулятивных формах рельефа, то вопрос сводится к определению обычными геологическими методами возраста слагающих эту форму отложений. Так, речные террасы, сложенные среднечетвертичными отложениями, имеют среднечетвертичный возраст; древние дюны, сложенные эоловыми плиоценовыми отложениями, имеют плиоценовый возраст и т. д. Сложнее с определением возраста выработанных форм рельефа. К. К. Марков рекомендует следующие способы: 1. Определение возраста по коррелятным отложениям. При образовании какой-либо выработанной формы рельефа, например оврага, в его устье накапливаются продукты разрушения пород, в которые врезается данный овраг, в виде аккумулятивной формы рельефа—конуса выноса. Определение геологическими методами возраста осадков, слагающих конус выноса, дает ключ и к определению возраста выработанной формы, в данном случае— оврага. 2. Метод возрастных рубежей. Его суть заключается в определении возраста отложений, фиксирующих нижний и верхний рубежи образования данной выработанной формы рельефа. Поясним на примере. Долина реки врезана в поверхность, сложенную морскими отложениями неогенового возраста. На дне долины под современным аллювием залегают ледниковые осадки раннечетвертичного возраста. Следовательно, рассматриваемая долина сформировалась на границе неогена и раннечетвертичного времени: она врезана в неогеновые отложения, т. е. моложе их, и выполнена нижнечетвертичными ледниковыми образованиями, т. е. старше их. 3. Определение времени «фиксации» денудационного рельефа. В ряде случаев денудационные поверхности бывают перекрыты (фиксированы) корой выветривания. Определение палеонтологическими, палеоботаническими или другими методами возраста коры выветривания дает тем самым ответ на вопрос о возрасте денудационной поверхности. 4. Метод фациальных переходов. Этот метод может быть применен при решении задачи о возрасте тех аккумулятивных форм, которые сложены осадками, не содержащими палеонтологических остатков. Прослеживая в пространстве данную пачку отложений до фациальной смены ее отложениями, содержащими палеонтологические остатки, устанавливают одновозрастность обеих пачек осадков и, следовательно, одновозрастность образуемых ими форм рельефа. Абсолютный возраст рельефа. В последние десятилетия благодаря развитию радиоизотопных методов исследования широко применяется определение возраста отложений и форм рельефа в абсолютных единицах—в годах. Для этого необходимо знать период полураспада того или иного радиоизотопа; затем определяют соотношение его количества в отложениях с производным. Факторы рельефообразования. Как указывалось выше, исходным положением современной геоморфологии является представление о том, что рельеф формируется в результате взаимодействия эндогенных и экзогенных процессов. Существует, кроме того, ряд факторов, которые непосредственно не участвуют в формировании рельефа, но влияют на его образование, определяя «набор» рельефообразующих процессов, степень интенсивности и пространственную локализацию воздействия тех и иных процессов. К числу таких факторов относятся вещественный состав пород, слагающих земную кору, геологические структуры, созданные тектоническими движениями прежних геологических эпох, климатические условия и в определенной степени сам рельеф. Рассмотрим эти факторы несколько подробнее. Свойства горных пород и их роль в рельефообразовании. Известно, что земная кора сложена горными породами разного генезиса и разнообразного химического и минералогического состава. Эти различия находят отражение в свойствах пород и как следствие этого в их устойчивости по отношению к. воздействию внешних сил. Различают породы более стойкие и менее стойкие, более податливые и менее податливые. В первом случае обычно имеют в виду стойкость пород по отношению к процессам выветривания, во втором — к воздействию на них текучих вод, ветра и других экзогенных сил. Различные генетические группы горных пород по-разному реагируют на воздействие внешних сил. Так, осадочные горные породы являются довольно стойкими по отношению к выветриванию, но многие из них весьма податливы к разрушительной работе текучих вод и ветра (лёсс, пески, суглинки, мергели, галечники и т.д.), а магматические и метаморфические породы оказываются слабо податливыми по отношению к размыву текучими водами, но сравнительно легко разрушаются под воздействием процессов выветривания. Объясняется это тем, что магматические и метаморфические породы образовались в глубине Земли, в определенной термодинамической обстановке и при определенном соотношении химических элементов. Оказавшись на поверхности Земли, они попадают в новые условия, становятся неустойчивыми в этих условиях и под воздействием различных процессов (окисления, гидратации, растворения, гидролиза и др.) начинают разрушаться. Интенсивность разрушения определяется как физико-химическими свойствами пород, так и конкретными физико-географическими условиями, поскольку в разных природных зонах характер процессов выветривания и сноса продуктов выветривания имеет свои специфические особенности. Из числа кристаллических пород более стойки по отношению, например, к физическому выветриванию породы мономинеральные, мелко- и равномерно-зернистые, светлоокрашенные, с массивной текстурой. Так, гранит—порода полиминеральная разрушается быстрее, чем кварцит—порода мономинеральная. Крупно- и неравномерно-зернистые граниты с более темной окраской в сходных условиях менее устойчивы, чем светлоокрашенные мелко- и равномерно-зернистые граниты. Гнейс—порода, сходная по структуре и минералогическому составу с гранитом, но имеющая иную текстуру (параллельно-сланцеватую или тонкополосчатую), подвержен более быстрому разрушительному воздействию выветривания, чем гранит, характеризующийся массивной текстурой. Основные и ультраосновные магматические породы при прочих равных условиях под воздействием выветривания разрушаются быстрее, чем породы кислые и средние. Существенное влияние на интенсивность процессов физического выветривания оказывают такие свойства горных пород, как теплоемкость и теплопроводность. Так, чем меньше теплопроводность, тем большие температурные различия возникают на соседних участках породы при ее нагревании и охлаждении и, как следствие этого, большие внутренние напряжения, которые и способствуют более быстрому ее разрушению. Большое морфологическое значение имеет степень проницаемости горных пород для дождевых и талых вод. Легко проницаемые породы, поглощая воду, способствуют быстрому переводу поверхностного стока в подземный. В результате участки, сложенные легкопроницаемыми породами, характеризуются слабым развитием эрозионных форм, а склоны этих форм вследствие незначительного поверхностного стока долгое время могут сохранять большую крутизну. На участках, сложенных слабопроницаемыми породами, создаются благоприятные условия для возникновения и развития эрозионных форм, для выполаживания их склонов. Залегание водоупорных пластов в основаниях крутых склонов долин рек, берегов озер и морей способствует развитию оползневых процессов и специфического рельефа, свойственного районам развития оползней. Проницаемость горных пород может быть обусловлена либо их строением (рыхлым— пески, галечники; пористым— известняки-ракушечники, различные туфы, пемза), либо их трещиноватостью (известняки, доломиты, магматические и метаморфические породы). Следует подчеркнуть, что трещиноватость горных пород, способствуя заложению и развитию эрозионных форм, часто определяет рисунок гидрографической сети в плане, особенно в ее верхних звеньях. Большое морфологическое значение имеет такое свойство горных пород, как растворимость. К числу легко- или относительно легкорастворимых пород относятся каменная соль, гипс, известняки, доломиты. В местах широкого развития этих пород формируются особые морфологические комплексы, обусловленные так называемыми карстовыми процессами. Находит отражение в рельефе и такое свойство горных пород, как просадочность. Этим свойством, выражающимся в уменьшении объема породы при ее намокании, обладают лёссы и лёссовидные суглинки. В результате просадки в областях распространения этих пород обычно образуются неглубокие отрицательные формы рельефа. Существует целый ряд других свойств, определяющих морфологическое значение пород и ступень их устойчивости к воздействию внешних сил. В конечном счете совокупность физических и химических свойств горных пород приводит к тому, что породы более стойкие образуют, как правило, положительные формы рельефа, менее стойкие—отрицательные. Следует еще раз подчеркнуть, что относительная стойкость породы зависит не только от ее свойств, обусловленных химическим и минералогическим составом. В значительной мере она определяется условиями окружающей среды. Одна и та же горная порода в одних условиях может выступать как стойкая, в других—как податливая. Поэтому, как справедливо отмечает И. С. Щукин, если мы хотим учесть морфологическое значение тех или других пород в формировании рельефа исследуемой территории, необходимо взвесить каждое из свойств и совокупное их выражение в условиях конкретной физико-географической обстановки. Рельеф и геологические структуры. Горные породы с характерными для них свойствами находятся в земной коре в самых разнообразных условиях залегания и в различных соотношениях друг с другом, определяя геологическую структуру того или иного участка литосферы. Благодаря избирательной селективной денудации, обусловленной свойствами горных пород, под воздействием экзогенных процессов происходит препарировка геологических структур. В результате могут возникнуть формы рельефа, облик которых в значительной мере предопределен структурами, поэтому такие формы рельефа называются структурными. Таким образом, свойства горных пород, их различная устойчивость по отношению к.воздействию внешних сил находят отражение в рельефе через геологические структуры. В этом и заключается роль геологических структур как одного из важнейших факторов формирования рельефа. Различные структуры обусловливают различные типы структурно-денудационного рельефа, возникающего на месте их развития. Различия проявляются даже в том случае, когда структуры подвергаются воздействию одного и того же комплекса внешних сил. Однако облик структурно-денудационного рельефа, размеры отдельных структурных форм зависят не только от типа геологической структуры, но также от характера и интенсивности воздействия внешних сил, от степени устойчивости слагающих структуру пластов, от их мощности и, как следствие этого, частоты чередования пластов, сложенных породами различной стойкости. В случае литологической однородности толщ, слагающих структуры, последние находят слабое отражение в рельефе. Рассмотрим некоторые типы геологических структур с точки зрения влияния их на облик структурно-денудационного рельефа. Широко распространена горизонтальная структура, свойственная верхнему структурному этажу платформ (платформенному чехлу), сложенному осадочными, реже магматическими породами. Горизонтальным структурам в рельефе соответствуют пластовые равнины (Приволжская возвышенность и др.), структурные плато и плоскогорья (плато Устюрт, Среднесибирское плоскогорье и др.), столовые страны. Рельеф столовых стран и плато характеризуется плоскими или слабо волнистыми междуречьями (бронированными пластами стойких пород), которые резко переходят в крутые склоны речных долин и других эрозионных форм рельефа. В условиях тектонического покоя и длительного воздействия эрозионно-денудационных процессов рельеф структурных плато и столовых стран может превратиться в рельеф островных столово-останцовых возвышенностей, в котором отрицательные формы рельефа занимают значительно большие площади, чем положительные (рис. 4). Рельеф столово-останцовых возвышенностей широко развит в Африке и в ряде мест на территории СССР, например по периферии плато Устюрт. В случае чередования (по вертикали) стойких и податливых пород, залегающих горизонтально, возникает ступенчатый рельеф. На склонах эрозионных форм при этих условиях образуются так называемые структурные террасы. При моноклинальном залегании чередующихся стойких и податливых пластов под воздействием избирательной денудации вырабатывается своеобразный структурно-денудационный рельеф, ггалучтгвшйй название куэстового. Куэста— грядообразцая возвышенность с асимметричными склонами: пологим, совпадающим с углом падения стойкого пласта (структурный склон), и крутым, срезающим головы пластов (аструктурный склон). Размеры куэстовых гряд могут сильно варьировать в зависимости от абсолютной высоты местности и глубины эрозионного расчленения, мощности стойких и податливых пластов и углов их падения. В одних случаях это высокие горные хребты (Скалистый хребет северного склона Большого Кавказа), в других—небольшие гряды с относительными превышениями, исчисляющимися первыми десятками метров. Весьма своеобразен рисунок и характер эрозионной сети в условиях куэстового рельефа. В зависимости от соотношения речных долин с элементами куэстового рельефа и элементами залегания пластов горных пород различают долины, консеквентные и субсеквентные. Консеквентные долины совпадают с общим наклоном топографической поверхности и с направлением падения пластов. Субсеквентными называют долины рек, направление которых совпадает с простиранием моноклинально залегающих пластов. Вследствие этого они перпендикулярны консеквентным долинам. Вырабатывая продольные долины вдоль выхода пластов податливых пород и как бы соскальзывая при врезании по кровле более стойких пластов, субсеквентные долины характеризуются четко выраженным асимметричным поперечным профилем. На склонах долин субсеквентных рек могут возникать притоки. Долины притоков, стекающих по более длинным и пологим (структурным) склонам куэст, получили название ресеквентных; долины противоположно направленных притоков, стекающих с коротких и крутых аструктурных склонов куэст, — обсеквентных. Сочетание всех названных типов долин образует в плане четко выраженный дважды перистый рисунок речной сети, весьма характерный для куэстовых областей, При больших углах наклона, частом чередовании стойких и податливых пластов и значительном эрозионном расчленении территории отпрепарированные моноклинальные гряды распадаются на отдельные массивчики, принимающие в плане треугольную форму и накладывающиеся друг на друга в виде черепицы. Такой рельеф И. С. Щукин называет шатровым или чешуйчатым. Моноклинальное залегание пластов свойственно крыльям и периклиналям крупных антиклинальных складок. И если в их строении участвуют породы различной стойкости, то в результате избирательной денудации возникают куэсты или моноклинальные гряды, пространственное положение которых дает возможность судить о форме складок в плане. Своими крутыми склонами куэсты всегда обращены к ядрам антиклиналей. Сходная картина образования куэст может наблюдаться по периферии соляных куполов, в осадочном чехле лакколитов. Долинная сеть, возникающая в таких условиях, в плане имеет кольцевидный или «вилообразный» рисунок. В случае очень крутого падения пластов или вертикального их залегания образуются (в отличие от типичных куэст) симметричные гряды, вытянутые по простиранию стойких пластов. Между грядами по простиранию податливых пластов закладывается параллельная эрозионная сеть. Более сложный рельеф возникает на месте складчатых структур, для которых характерны частые изменения направления и угла падения пластов в зависимости от формы складок в профиле и плане и от их размеров. Характер рельефа складчатых областей во многом определяется также составом пород, смятых в складки, глубиной расчленения и длительностью воздействия экзогенных сил. При этом могут возникать самые разнообразные соотношения между формами рельефа и складчатыми структурами, на которых эти формы образуются. В одних случаях наблюдается соответствие между типом геологической структуры и формой рельефа, т. е. антиклиналям (положительным геологическим структурам) соответствуют возвышенности или хребты, а синклиналям (отрицательным геологическим структурам)— понижения в рельефе. Такой рельеф получил название прямого. На территории СССР примером таких форм являются небольшие возвышенности, соответствующие брахиантиклинальным складкам на Керченском, Таманском и (реже) Апшеронском полуостровах. Встречаются такие формы рельефа и в пределах молодых складчатых гор. Часто в складчатых областях развит так называемый обращенный или инверсионный рельеф, характеризующийся обратным. соотношением между топографической поверхностью и геологической структурой. На месте положительных геологических структур образуются отрицательные формы рельефа, и наоборот. Объясняется это тем, что ядра антиклиналей начинают разрушаться под действием процессов денудации раньше, чем осевые части синклиналей. Кроме того, вследствие повышенной раздробленности пород, возникающей в ядрах антиклиналей при изгибе пластов, разрушение их под действием внешних сил происходит интенсивнее. Описанные выше структуры могут быть осложнены разломами, по которым блоки земной коры смещаются относительно друг друга в вертикальном или горизонтальном направлениях, оказывая существенное влияние на формирование и облик возникающего при этом рельефа. Структуры.земной коры становятся еще более сложными под воздействием интрузивного и эффузивного магматизма, приводящего к возникновению самых разнообразных взаимоотношений между пластами осадочных пород и магматическими телами, непосредственно отражающимися в рельефе, или под воздействием последующих денудационных процессов. Влияние геологических структур на формирование рельефа и их отражение в рельефе от места к месту не остается одинаковым и зависит как от соотношения взаимодействия эндогенных и экзогенных процессов, так и от конкретных физико-географических условий. Наиболее четко структурность рельефа проявляется на территориях, испытывающих тектонические поднятия (где превалируют процессы денудации), особенно в условиях сухого (аридного) климата. Понимание взаимосвязей, существующих между рельефом и геологическими структурами, имеет б<
|
||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 1367; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.29.248 (0.016 с.) |