Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Обращение непрерывной монотонной функции.↑ ⇐ ПредыдущаяСтр 2 из 2 Содержание книги
Поиск на нашем сайте
Определение: Функция f обратима на множестве Х если уравнение f(х)=у однозначно разрешимо относительно уf(Х). Определение: Если функция f обратима на множестве Х. То функция однозначно сопоставляющая каждому уо такое х0 что f(х0)=у0 - называется обратной к функции f. Теорема: Пусть строго возрастающая (строго убывающая) ф-ция f определена и непрерывна в промежутке Х. Тогда существует обратная функция f’, определенная в промежутке Y=f(Х), также строго возрастающая (строго убывающая) и непрерывная на Y. Доказательство: Пусть f строго монотонно возрастает. Из непрерывности по следствию из Теоремы о промежуточном значении следует, что значения непрерывной функции заполняют сплошь некоторый промежуток Y, так что для каждого значения у0 из этого промежутка найдется хоть одно такое значение х0Х, что f(х0)=у0. Из строгой монотонности следует что такое заначение может найтись только одно: если х1> или <х0, то соответственно и f(х1)> или <f(х0). Сопоставля именно это значение х0 произвольно взятому у0 из Y мы получим однозначную функцию: х=f’(у) - обратную функции f. Функция f`(y) подобно f(x) также строго монотонно возрастает. Пусть y’<y” и х’=f`(у’), х”=f`(у”), так как f` - обратная f => у’=f(х’) и у”=f(х”) Если бы было х’>х”, тогда из возрастания f следует что у’>у” - противоречие с условием, если х’=х”, то у’=у” - тоже противоречие с условием. Докажем что f` непрерывна: достаточно доказать, что Lim f`(у)=(у0) при уу0. Пусть f`(у0)=х0. Возьмем произвольно Е>0. Имеем уУ: |f`(у)-f`(у0)|<Е <=> х0-Е<f`(у)<х0+Е <=> f(х0-Е)<у<f(х0+Е) <=> f(х0-Е)-у0<у-у0<f(х0+Е)-у0 <=> -’<у-у0<”, где ’=у0-f(х0-Е)>у0-f(х0)=0, ”=f(х0+Е)-у0>f(х0)-у0=0, полагая =min{’,”} имеем: как только |у-у0|< => -’<у-у0<” <=> |f`(у)-f`(у0)|<Е Непрерывность степенной функции с рациональным показателем: Определение: Степенной функцией с Q показателем называется функция хM/N - где mÎZ, nÎN. Очевидно степенная функция явл-ся cуперпозицией непре рывных строго монотонно возрастающих ф-ций хM и х1/M => ф-ция хM/N - непрерывна при х>0. Если х=0, то хM/N = 1, а следовательно непрерывна. Рассмотрим ф-цию хN, nÎN: она непрерывна так как равна произведению непрерывных функций у=х. n=0: хN тождественно равно константе => хN - непрерывна х-N=1/хN, учитывая что: 1) 1/х - непрерывная функция при х¹0 2) хN (nÎN) - тоже непрерывная функция 3) х-N=1/хN - суперпозиция ф-ий 1/х и хN при х¹0 По теореме о непрерывности суперпозиции ф-ций получаем: х-N - непрерывная при х¹0, т.о. получили что хMmÎZ - непрерывная ф-ция при х¹0. При х>0 ф-ция хN nÎN строго монотонно возрастает и ф-ция хNнепрерывна=>$ функция обратная данной, которая также строго монотонно возрастает (при m>0), очевидно этой функцией будет функция х1/N Тригонометрические функции на определенных (для каждой) промежутках обратимы и строго монотонны =>имеют непрерывные обратные функции => обратные тригонометрические функции - непрерывны
Определение показательной функции вещественной переменной. Непрерывность показательной функции. Определение: Показательная функция на множестве действительных чисел: Функция вида аX, а>0, а¹1 xÎR.
Докажем что . . При а > 1 показательная функция является монотонно возрастающей, поэтому . Так как , то по теореме о пределе промежуточной функции справедливо соотношение Далее имеем, , что и требовалось доказать. Св-ва показательной функции Свойства: x,yÎR. 1) aX * aY = aX+Y xN®x, yN®y => aXn * aYn = aXn+Yn => Lim aXn * aYn = Lim aXn+Yn => Lim aXn * lim aYn = Lim aXn+Yn => aX * aY = aX+Y 2) aX / aY = aX-Y 3) (aX)Y=aX*Y xN®x, yK®y => (aXn)Yk = aXn*Yk => (n®¥) (aX)Yk=aX*Yk =>(k®¥) (aX)Y=aX*Y 4) x<y => aX<aY (a>1) - монотонность. x<x’ x,x’ÎR; xN®x x’N®x’ xN,x’NÎQ => xN<x’N => aXn < aX’n => (n®¥) aX£aX’- монотонна x-x`>q>0 => aX-X’ ³ aQ>1 => aX-X’¹1 => aX<aX’ - строго монотонна 5) при x n®0 aX ®1 Т.к. Lim a1/N=1 (n®¥), очевидно, что и Lim a-1/N=Lim1/a1/N=1 (n®¥). Поэтому "Е>0 $n0: "n>n0 1-E<a-1/N<a1/N<1+E, а>1. Если теперь |x|<1/n0, то a-1/N<aX<a1/N => 1-E<aX<1+E. => Lim aX=1 (при x®0) 6) aX - непрерывна Lim aX=1 (n®0) из (5) - это означает непрерывность aX в точке 0 => aX-aXo= aXo(aX-Xo - 1) при х®x0 x-x0 n®0 => aX-x0 n®1 => при х®x0 lim(aX - aXo)= Lim aXo*Lim(aX-Xo - 1) = x0 * 0 = 0 => aX - непрерывна 18.Последовательность (1+1/n)n и ее предел. xN= ; yN= ; zN=yN + xN монотонно возрастает: докажем: xN=(1+1/n)n=1+ n/1!*1/n + n*(n-1)/2!*1/n2 +... < 1 + 1/1! + 1/2!+...+1/n! = yN => yN<zN<3 Воспользуемся неравенством Бернулли (1+x)n³1+nx, x>-1) (доказывается по индукции): x=1/n => (1+1/n)n³1+n/n=2 Получили: 2 £ xN<3 => xN - ограничена, учитывая что xN - монотонно возрастает => xN - сходится и ее пределом является число е.
|
||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 302; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.6.9 (0.009 с.) |