Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Особенности микроскопии в ультрафиолетовых лучах, люминисцентная микроскопия, фазово-контрастная, интерференционная микроскопия.

Поиск

Ультрафиолетовая микроскопия, это разновидность световой микроскопии. В ультрафиолетовом микроскопе используют более короткие ультрафиолетовые лучи с длиной волны около 0,2 мкм. Разрешаемое расстояние здесь в 2 раза меньше, чем в обычных световых микроскопах, и составляет приблизительно 0,1 мкм. Полученное в ультрафиолетовых лучах невидимое глазом изображение преобразуется в видимое с помощью регистрации на фотопластинке или путем применения специальных устройств (люминесцентный экран, электронно-оптический преобразователь).

 

Флюоресцентная (люминесцентная) микроскопия.

Явления флюоресценции заключаются в том, что атомы и молекулы ряда веществ, поглощая коротковолновые лучи, переходят в возбужденное состояние. Обратный переход из возбужденного состояния в нормальное происходит с испусканием света, но с большей длиной волны. В флюоресцентном микроскопе в качестве источников света для возбуждения флюоресценции применяют ртутные или ксеноновые лампы сверхвысокого давления, обладающие вы-сокой яркостью в области спектра 0,25—0,4 мкм (ближние ультрафиолетовые лучи) и 0,4—0,5 мкм (сине-фиолетовые лучи). Длина световой волны флюоресценции всегда больше длины волны возбуждающего света, поэтому их разделяют с помощью светофильтров и изучают изображение объекта только в свете флюоресценции. Различают собственную, или первичную, и наведенную, или вторичную, флюоресценцию. Любая клетка живого организма обладает собственной флюоресценцией, однако она часто бывает чрезвычайно слабой. Первичной флюоресценцией обладают серотонин, катехоламины (адреналин, норадреналин), содержащиеся в нервных, тучных и других клетках, после фиксации тканей в парах формальдегида при 60—80 °С (метод Фалька). Вторичная флюоресценция возникает при обработке препаратов специальными красителями — флюорохромам. Существуют различные флюорохромы, которые специфически связываются с определенными макромолекулами (акридин оранжевый, родамин, флюоресцеин и др.). Например, при обработке препаратов чаще всего употребляется флюорохром акридиновый оранжевый. В этом случае ДНК и ее соединения в клетках имеют ярко-зеленое; а РНК и ее производные ~ ярко-красное свечение.

 

Фазово-контрастная микроскопия.

Этот метод служит для получения контрастных изображений прозрачных и бесцветных живых объектов, невидимых при обычных методах микроскопирования. Метод фазового контраста обеспечивает контрастность изучаемых неокрашенных структур за счет специальной кольцевой диафрагмы, помещаемой в конденсоре, и так называемой фазовой пластинки, находящейся в объективе.

 

Интерференционная микроскопия.

Разновидностями фазово-контрастного микроскопа являются интерференционный микроскоп, который предназначен для количественного определения массы ткани, и дифференциальный интерференционный микроскоп (с оптикой Номарского), который специально используют для изучения рельефа поверхности клеток и других биологических объектов. В интерференционном микроскопе пучок света от осветителя разделяется на два потока: один проходит через объект и изменяет по фазе колебания, второй идет, минуя объект. В призмах объектива оба пучка соединяются и интерферируют между собой. В результате строится изображение, в котором участки микрообъекта разной толщины и плотности различаются по степени контрастности. Проведя количественную оценку изменений, определяют концентрацию и массу сухого вещества.

Фазово-контрастны и интерференционный микроскопы позволяют изучать живые клетки. В них используется эффект интерференции, возникающий при комбинации двух наборов волн, который создает изображение микроструктур. Преимуществом фазово-контрастной, интерференционной является возможность наблюдать клетки в процессе движения и митоза. При этом регистрация движения клеток может производиться с помощью цейтраферной (покадровой) микрокиносъемки.

 

 

Специальные методы изучения микрообъектов - гистохимия, радиоавтография, применение моноклональных антител. Общая характеристика, особенности и возможности применения.

 

Гистохимия.

Этот метод позволяет выявлять локализацию различных химических веществ в структурах клеток, тканей и других органах. Этот метод основан на специфичности реакции между химическим реактивом и субстратом, входящим в состав клеточных и тканевых структур, и окрашивании продуктов химических реакций. Для повышения специфичности реакции часто применяют ферментативный контроль. Например, для выявления в клетках рибонуклеиновой кислоты (РНК) часто используют галлоцианин — краситель с основными свойствами, а наличие РНК подтверждают контрольной обработкой рибонуклеазой, расщепляющей РНК. Галлоцианин окрашивает РНК в сине-фиолетовый цвет. Если срез предварительно обработать рибонуклеазой, а затем окрасить галлоцианином, то отсутствие окрашивания подтверждает наличие в структуре рибонуклеиновой кислоты.

 

Радиоавтография.

Этот метод дает возможность наиболее полно изучить обмен веществ в разных структурах. В основе метода лежит использование радиоактивных элементов (например, фосфора — 32Р, углерода — 14С, серы — 35S, водорода — 3Н) или меченных ими соединений. Радиоактивные вещества в гистологических срезах обнаруживают с помощью фотоэмульсии, которую наносят на препарат и затем проявляют. В участках препарата, где фотоэмульсия соприкасается с радиоактивным веществом, происходит фотореакция, в результате которой образуются засвеченные участки (треки). Этим методом можно определять, например, скорость включения меченых аминокислот в белки, образование нуклеиновых кислот, обмен йода в клетках щитовидной железы и др.

 

Применение антител.

Антитела - защитные белки, вырабатываемые плазмоцитами (производными В-лимфоцитов) в ответ на действие чужеродных веществ (антигенов). Каждое антитело имеет участки для «узнавания» молекул, вызвавших синтез этого антитела. В связи с высокой специфичностью антител в отношении антигенов они могут быть использованы для выявления любых белков клетки. Для выявления локализации белков антитела окрашивают флюоресцирующими красителями, а затем клетки изучают с помощью флюоресцентной микроскопии.

Антитела можно использовать также для изучения антигенов на ультраструктурном уровне с помощью электронного микроскопа. Для этого антитела метят электронно-плотными частицами (микросферы коллоидного золота). Для усиления специфичности реакции применяют моноклональные антитела, образуемые линией клеток, — клонами, полученной методом гибридом из одной клетки. Метод гибридом позволяет получать моноклональные антитела с одинаковой специфичностью и в неограниченных количествах.

Методы иммунофлюоресцентного анализа широко и эффективно используются в современной гистологии. Эти методы применяются для изучения процессов дифференцировки клеток, выявления в них специфических химических соединений и структур. Они основаны на реакциях антиген — антитело.

6. Методы исследования живых клеток – культуры тканей, вне и внутри организма, клонирование, образование гибридов и гетерокарионов, прижизненная окраска.

 

Метод гибридизации.

Этот метод основывается на специфическом связывании участков ДНК с комплементарными им маркированными фрагментами РНК или ДНК (так называемые зонды). Метод позволяет выявлять последовательность нуклеотидов в РНК и ДНК и, следовательно, локализацию определенных генов и продуктов их деятельности.

 

Прижизненная окраска.

Витальное и суправитальное окрашивание. Привитальном (прижизненном) окрашивании клеток и тканей краситель вводят в организм животного, при этом он избирательно окрашивает определенные клетки, их органеллы или межклеточное вещество. Например, с помощью трипанового синего или литиевого кармина выявляют фагоциты, а с помощью ализарина — новообразованный матрикс кости.

Суправитальным окрашиванием называют окрашивание живых клеток, выделенных из организма. Таким способом выявляют молодые формы эритроцитов — ретикулоциты крови (краситель бриллиантовый крезиловый голубой), митохондрии в клетках (краситель зеленый янус), лизосомы (краситель нейтральный красный).

 

 



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 1635; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.12.95 (0.006 с.)