Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дисперсия и ее свойства. Среднее квадратическое отклонение.↑ ⇐ ПредыдущаяСтр 5 из 5 Содержание книги
Поиск на нашем сайте
Во многих практически важных случаях существенным является вопрос о том, насколько велики отклонения случайной величины от ее математического ожидания.
Пусть - дискретная случайная величина, принимающая значения x1, x2,..., xn соответственно с вероятностями p1, p2,..., pn. Очевидно, случайная величина принимает значения с теми же вероятностями p1, p2,..., pn. Следовательно, согласно определению математического ожидания дискретной случайной величины, имеем
Если же - случайная величина с плотностью распределения , то по определению
Принимая во внимание определение дисперсии и свойства математического ожидания, имеем Так как и - постоянные, то используя свойства математического ожидания, получим Следовательно, Откуда окончательно находим
1°. Дисперсия постоянной равна нулю. (Доказательство) 2°. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:
(Доказательство)
3°. Если и - независимые случайные величины, то дисперсия суммы этих величин равна сумме их дисперсий:
(Доказательство)
Средним квадратическим отклонением случайной величины называется корень квадратный из ее дисперсии:
Пример 1. Cлучайная величина - число очков, выпадающих при однократном бросании игральной кости (см. § 3, п.1, пример 1). Определить: математическое ожидание, дисперсию и средне квадратическое отклонение Решение: Используя формулы (39), (44) и (49) соответственно получим
Пример 2. Cлучайная величина - число наступления события A при одном испытании, причем P(A)=p (см. § 3, п.1, пример 2). Найти математическое ожидание и дисперсию. Решение: Величина принимает два значения 0 и 1 соответственно с вероятностями q=1-p и p. Поэтому по формулам (39) и (44) находим
Решение: Пусть - случайная величина, принимающая значения 1 или 0 в зависимости от того, происходит или не происходит событие A в i -м опыте. Тогда . Ясно, что попарно независимы. Из результата примера 2 следует, что , для любого i. На основании свойства 3° для математического ожидания и дисперсии имеем
Пример 4. Пусть - случайная величина распределенная по закону Пуассона [См. формулу (17)]. Найти: Решение: Используя соотношение (39), получим
Пример 5. Пусть - случайная величина, имеющая равномерное распределение с плотностью
[См. формулу (27)]. Найти математическое ожидание, дисперсию и средне квадратическое отклонение cлучайной величины. Решение: По формулам (40), (45) и (49) находим
,то по формуле (40) находим Проведем в интеграле замену переменной, полагая тогда Следовательно, Но [См. формулу (29)]. Далее, так как функция нечетная, то по свойству нечетных функций Следовательно, Дисперсию находим по формуле (45) (вычисление интеграла не приводим). Итак,
Таким образом, параметры a и для нормально распределенной случайной величины имеют простой вероятностный смысл: a есть математическое ожидание, - среднее квадратическое отклонение.
* Казалось бы естественным рассматривать не квадрат отклонения, а просто отклонение случайной величины от ее математического ожидания. Однако математическое ожидание этого отклонения равно нулю, так как Здесь мы воспользовались тем, что постоянно, а математическое ожидание постоянной есть эта постоянная. Можно было бы принять за меру рассеяния математическое ожидание модуля отклонения случайной величины от ее математического ожидания: . Однако, как правило, действия связанные с абсолютными величинами, приводят к громоздким вычислениям.
|
||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 161; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.99.18 (0.008 с.) |