Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Шифраторы и дешифраторы. Мультиплексоры и демультиплексоры. Сумматоры.Содержание книги
Поиск на нашем сайте
Дешифратор – это устройство, предназначенное для преобразования двоичного кода в напряжение логической единицы (логического нуля) на том выходе, номер которого совпадает со значением двоичного кода на входе. При n входах в полном дешифраторе имеется 2 n выходов, т.е. для каждой комбинации входных сигналов имеется соответствующий выход. Дешифратор, у которого при n входах число выходов меньше 2 n, называется неполным. Другое название дешифратора - декодер. Соответствующие таблице истинности ФАЛ имеют вид .Структурная схема трехразрядного дешифратора, синтезированная на основании полученных ФАЛ приведена на рис. 4.10, а, а его УГО - на рис. 4.10, б. б) Рис. 4.10.Структурная схема и УГО трехразрядного дешифратора. В общем случае логические уравнения для выходных переменных дешифратора n -разрядного числа имеют вид .Построенные по полученным формулам дешифраторы называются линейными. К преимуществу линейных дешифраторов можно отнести высокое быстродействие, поскольку входные переменные одновременно поступают на все элементы И. Одновременно, без дополнительных задержек, формируется и результат на выходах этих элементов. Очевидно, что для реализации линейного дешифратора n -разрядного числа необходимо иметь 2 n логических элементов И с n -входами. В существующих микросхемах логических элементов количество входов ограничено. Следовательно, ограничена и разрядность реализуемых на их основе линейных дешифраторов, что является недостатком. Кроме того, недостатком является и то, что предыдущие элементы, работающие на входы дешифратора, должны иметь высокую нагрузочную способность, т.е. должны быть рассчитаны на подключение большого числа логических элементов И. Каждый из входов дешифратора подключен к 0,5·2 n логическим элементам И. Поскольку нагрузочная способность базовых логических элементов ИС не превышает величины N =10¸20, то максимальная разрядность дешифрируемых чисел для линейных дешифраторов n =4¸5.Указанного недостатка лишены пирамидальные дешифраторы. Принцип построения этих дешифраторов состоит в том, что сначала строят линейный дешифратор для двухразрядного числа X 1, X 2, для чего необходимы 22=4 двухвходовые схемы И. Далее, каждая полученная конъюнкция логически умножается на входную переменную X 3 в прямой и инверсной форме. Полученная конъюнкция снова умножается на входную переменную X 4 в прямой и инверсной форме и т.д. Наращивая таким образом структуру, можно построить пирамидальный дешифратор на произвольное число входов. На рис. 4.11 приведена структура пирамидального дешифратора для трех разрядов.
>Рис. 4.11. Пирамидальный дешифратор для трехразрядного числа.Характерным отличием пирамидальных дешифраторов от линейных является использование только двухвходовых логических элементов вне зависимости от разрядности дешифрируемого числа. В то же время количество логических элементов в пирамидальном дешифраторе больше. Однако следует иметь ввиду, что количество логических элементов, располагаемых в одном корпусе ИС, определяется главным образом требуемым количеством выводов. Следовательно, в одном корпусе ИС можно расположить большее число двухвходовых элементов, чем трехвходовых, четырехвходовых и т.д. И значит, пирамидальная структура дешифратора по числу корпусов ИС может оказаться более предпочтительной, чем линейная. Шифраторы выполняют задачу обратную той, которую выполняют дешифраторы: появление логической единицы (логического нуля) на определенном входе приводит к появлению соответствующей кодовой комбинации на выходе. Также как и дешифраторы, шифраторы бывают полными и неполными. Работа восьмивходового полного шифратора задается следующей таблицей истинности.На основании таблицы истинности можно записать ФАЛ, задающие работу восьмивходового шифратора: .Синтезированная на основании приведенных логических уравнений структурная схема шифратора представлена на рис. 4.12, а, а его условное графическое обозначение – на рис. 4.12, б.
а) б) Рис. 4.12.Структура и УГО восьмивходового шифратора.
Мультиплексор - это устройство, которое осуществляет выборку одного из нескольких входов и подключает его к своему выходу, в зависимости от состояния двоичного кода. Другими словами, мультиплексор - переключатель сигналов, управляемый двоичным кодом и имеющий несколько входов и один выход. К выходу подключается тот вход, чей номер соответствует двоичному коду. Ну и навороченное определение: мультиплексор - это устройство, преобразующее параллельный код в последовательный. Структуру мультиплексора можно представить различными схемами, но более понятна, на мой взгляд, вот эта:
Рис. 1 - Структура мультиплексора Самая большая хренотень есть не что иное, как элемент И-ИЛИ. Конкретно здесь элемент 4-х входовый. Ну а квадратики с единичками внутри, если кто не помнит, инверторы. Разберем выводы. Те, что слева, а именно D0-D3, называются информационными входами. На них чего-нибудь подают. Входы посередке, а именно А0-А1, называются адресными входами. Вот сюда именно и подается двоичный код, от которого зависит, какой из входов D0-D3 будет подключен к выходу, на этой схеме обозначенному как Y. Вход С, черт его знает, нафига он здесь. Вроде бы как разрешение работы, а может просто для понта. Ну его в баню. На схеме еще есть входы адреса с инверсией. Так вот они тоже показаны здесь для понта. На этом рисунке показан четырехвходовой, или как еще его называют, 4Х1 мультиплексор. Потому и адресных входов всего 2. Как нам известно, максимальное число переменных определяется как 2n, где n - разряд кода. Здесь мы видим, что переменных четыре штуки, а значит разряд будет равен 2 (22 = 4). Для пояснения принципа работы этой схемы посмотрим на табличку истинности:
Вот так двоичный код выбирает нужный вход. Т. е., если имеем четыре объекта, ну, скажем, они пуляют сигналы, а устройство отображения у нас одно. Берем мультик (мультиплексор) и втуляем его в схему. В зависимости от двоичного кода к устройству отображения подключается сигнал от нужного объекта. Такой вот, дохленький пример. Микросхемой мультик обозначается вот так:
Рис. 2 - Мультиплексор Вообще, мультиплексоров всяких дофига. Есть и сдвоенные четырехвходовые, восьмивходовые, 16-ти входовые, счетверенные двухвходовые и пр. Тот, что на рисунке сделан от фонаря. Демультиплексор. Демультиплексор - устройство, обратное мультиплексору. Т. е., у демультиплексора один вход и куча выходов. Двоичный код определяет, какой выход будет подключен ко входу. Другими словами, демультиплексор - это устройство, которое осуществляет выборку одного из нескольких выходов и подключает его к своему входу или, это переключатель сигналов, управляемый двоичным кодом и имеющий один вход и несколько выходов. Ко входу подключается тот выход, чей номер соответствует состоянию двоичного кода. И навороченное определение: демультиплексор - это устройство, которое преобразует последовательный код в параллельный. Обычно в качестве демультиплексора используют дешифраторы двоичного кода в позиционный, в которых вводят дополнительный вход стробирования. Из-за схожести структур мультиплексора и демультиплексора в КМОП сериях есть микросхемы, которые одновременно являются мультиплексорром и демультиплексором, смотря с какой стороны подавать сигналы, например, К561КП1, работающая как переключатель 8х1 и переключатель 1х8 (то бишь, как мультиплексор и демультиплексор с восемью входами или выходами). Кроме того, в КМОП микросхемах помимо переключения цифровых сигналов (лог. 0 или 1) существует возможность переключения аналоговых. Другими словами, это переключатель аналоговых сигналов, управляемый цифровым кодом. Такие микросхемы называются коммутаторами. К примеру, с помощью коммутатора можно переключать сигналы, поступающие на вход усилителя (селектор входов). Вот напоследок простенькую схемку селектора входов УМЗЧ мы и рассмотрим. Построим ее, ну скажем, с использованием триггеров и мультиплексора.
Рис. 3 - Селектор входных сигналов Вот такая нехитрая схемка. Итак, разберем работу и деталюшки. На триггерах микросхемы DD1 собран кольцевой счетчик нажатий кнопки разрядностью 2 (два триггера - 2 разряда). Двухразрядный двоичный код поступает на адресные входы D0-D1 микросхемы DD2. Микросхема DD2 представляет собой сдвоенный четырехканальный коммутатор. В соответствии с двоичным кодом к выходам микросхемы А и В подключаются входы А0-А3 и В0-В3 соответственно. Элементы R1, R2, C1 устраняют дребезг контактов кнопки. Дифференцирующая цепь R3C2 устанавливает триггеры в нулевое состояние при включении питания, при этом к выходу подключается первый вход. При нажатии на кнопку триггер DD1.1 переключается в состояние лог. 1 и к выходу подключается второй вход и т. д. Перебор входов идет по кольцу, начиная с первого. С одной стороны просто, с другой немного неудобно. Черт его знает, сколько раз нажали на кнопку после включения и какой вход подключен к выходу. Хорошо бы поставить индикатор подключенного входа. Вот тут-то и пригодится семисегментный дешифратор. Нажимаем ссылочку, вспоминаем семисегментный дешифратор и смотрим на схемку (там, где циферки бегут). Берем дешифратор и индикатор, обрубаем счетчик и другую галиматью, переносим дешифратор с индикатором на схему коммутатора и первые два входа дешифратора (на схеме обозначен как DD3), т. е. 1 и 2 (выв. 7 и 1) подключаем к прямым выходам триггеров DD1.1 DD1.2 (выв. 1 и 13). Входы дешифратора 4 и 8 (выв. 2 и 6) кидаем на корпус (т. е. подаем лог. 0). Все! Индикатор будет показывать состояние кольцевого счетчика, а именно циферки от 0 до 3. Цифиря 0 соответствует первому входу, 1 - 2-му и т. д. Сумматор. К суммирующим схемам относятся сумматоры и схемы вычитания. Эти схемы используются для решения алгебраических уравнений и в устройстваханалоговой обработки сигналов. Сумматором называется устройство, на выходе которого сигналы, подаваемые на его входы, суммируются. Сумматоры строятся с использованием инвертирующих и неинвертирующих усилителей.Схема инвертирующего сумматора с тремя входными сигналами привед. на рис. 11.10. Для простоты рассуждений принимаем, что R1=R2=R3=Roc. Поскольку у идеального ОУ KU→∞,Rвx→∞, а ток смещения очень мал посравнению с током обратной связи, то согласно закона Кирхгофа I1+I2+I3=Iос. (11.19)Вследствие того, чтоинвертирующий вход имеетпрактически нулевой потенциал, то внем отсутствует взаимное влияние
входных сигналов. Выражение(11.19) может быть представлено ввиде
Следовательно на выходе получается инвертированная сумма входныхнапряжений. Если R1≠R2≠R3, то на выходе получается инвертированная суммавходных напряжений (11.20) с различными масштабными коэффициентами. Инвертирующий сумматор объединяет в себе функции сумматора и усилителяпри сохранении простоты схемы. Резистор R служит для компенсации сдвигануля на выходе ОУ, вызванного временными и температурными колебаниямивходного тока. Сопротивление R выбирают токай величины, чтобы эквивалентные сопротивления, подключенные ко входам ОУ были одинаковы:R=Roc||R1||R2||R3. Схема неинвертирующего сумматора, который строится на базе неинвер- тирующего усилителя, приведена на рис. 11.11. Так как при U0=0 напряжения на инвертирующем и неинвертиющем входах равны, то
|
|||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 2377; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.137.150 (0.012 с.) |