Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Молекулярное моделирование с помощью программы HyperChemСодержание книги
Поиск на нашем сайте
Молекулярное моделирование – сложная сеть различных наук, находящее применение в нанотехнологии, в молекулярной биологии, квантовой химии и биотехнологии. Молекулярное моделирование молодая, востребованная и бурно развивающаяся наука. На сегодняшний день методы квантовой химии и молекулярной динамики получили широкое распространение в численном моделировании электронной и атомной структур сложных систем молекулярных, кристаллических и переходных размеров. Это связано с технологическим развитием соответствующего математического обеспечения. Сейчас в мире функционирует достаточно много современных вычислительных комплексов, реализующих методы квантовой химии и молекулярной динамики. Использование многих из этих методов обеспечивается программой Hyper Chem для молекулярного моделирования. HyperChem - комплексный программный продукт, предназначенный для задач молекулярного моделирования. Он включает в себя программы, реализующие методы молекулярной механики, квантовой химии и молекулярной динамики. Силовые поля, которые могут использоваться в HyperChem - это ММ+ (на базе ММ2), Amber, OPLS и BIO+ (на базе CHARMM). Реализованы полуэмпирические методы: расширенный метод Хюккеля, CNDO, INDO, MINDO/3, MNDO, AM1, PM3, ZINDO/1, ZINDO/S, а также возможности проведения неэмпирических расчетов и по теории возмущений Меллера-Плессета второго порядка. HyperChem обладает развитыми средствами визуализации, которые могут использоваться как при подготовке входной информации (структуры молекулы), так и при анализе результатов, например, рассчитанных характеристик ИК- и УФ- спектров. Расчётные методы оказывают неоценимую помощь в создании лекарственных средств. Молекулярное моделирование входит во все области знаний и находит себе применение, порой играя одну из главных ролей. Некоторые области химии немыслимы без молекулярного моделирования. В развитых странах моделирование является современным методом изучения микроструктур. В настоящее время для изучения реакционной способности молекул используются приближения CNDO/2, MNDO, AM1, PM3. Метод CNDO основан на приближении нулевого дифференциального перекрывания и поэтому является одним из простейших полуэмпирических методов. Из этого факта следуют ограничения применимости метода, который из-за обедненной расчетной схемы недостаточно корректно воспроизводит многие эффекты. С появлением более совершенных версий полуэмпирических методов МО приближение CNDO все реже применяется на практике. Так, в версии 7 программного продукта МОРАС данный метод не представлен. Тем не менее, во многих случаях для быстрой оценки электронных параметров полезно использовать схему CNDO, так как вследствие резкого уменьшения количества рассчитываемых интегралов с помощью этого метода можно исследовать более сложные объекты. В целом CNDO/2 дает надежные результаты при расчете электронных распределений и свойств, зависящих от них. Основным калибровочным параметром в CNDO является резонансный интеграл. Он подбирается так, чтобы относительный порядок энергетических уровней занятых МО и коэффициенты разложения МО в ЛKAO наилучшим образом совпали с расчетами ab initio соединений обучающей выборки. Общим достоинством всех перечисленных версий является прежде всего сравнительно малое время расчетов и меньшие размеры занимаемой оперативной памяти по сравнению с более точными приближениями. Это дает возможность как для быстрой оценки исследуемых объектов, так и для изучения более сложных молекул, требующих длительного времени расчета и больших объемов оперативной памяти. В целом приближение CNDO хорошо описывает электростатические эффекты и полярность связи. CNDO/2 может применяться для расчета дипольных моментов и зарядов по схеме Малликена и оценки равновесной геометрии. Недостатки приближения CNDO являются следствием усечения расчетной схемы, которая не учитывает взаимодействия между перекрываниями орбитальных зарядов. В результате многие эффекты не воспроизводятся. Метод MNDO был разработан на основе более строгого и сложного приближения NDDO. Это позволило существенно улучшить результаты расчетов при решении многих задач. Длительное время метод рассматривался в качестве основного полуэмпирического метода квантовой химии. Его возможности позволили с достаточной степенью надежности рассчитывать физико-химические свойства, электронные структуры и реакционную способность множества молекулярных систем. Преимущество заключается в быстродействии (по сравнению с неэмпирическими методами) программ, в которых реализована схема MNDO. Это позволяет применять ее для исследования все более сложных объектов. Недостатки связаны с тем, что точность метода не может превышать точность тех экспериментальных данных, по которым проводилась параметризация. В схеме MNDO используются 3 вида параметров. Во-первых, варьируемые параметры, значения которых определяют с помощью оптимизационной процедуры. Во-вторых, одноцентровые двухэлектронные интегралы, оценивающиеся из спектроскопических данных. В-третьих, ряд зависимых параметров, необходимых для расчета двухцентровых двухэлектронных интегралов, оценивающиеся с помощью эмпирических схем. В настоящее время область применения метода MNDO достаточно изучена. Зная особенности расчетной схемы MNDO, его преимущества и недостатки можно с успехом применять метод для решения многих задач. Хотя в целом метод MNDO имеет существенные преимущества перед СNDO, в некоторых случаях метод дает серьезные сбои. Это в первую очередь касается расчетов молекул с водородными связями, барьеров внутреннего вращения в p-сопряженных системах и расчетов четырехчленных циклов. Поэтому в рамках метода MNDO были разработаны модифицированные варианты. Для расчета характеристик систем с водородными связями были разработаны методы MNDO/Н и MNDO/М, которые лучше воспроизводят экспериментальные значения энергии водородных связей в комплексах. Удовлетворительное описание водородных связей позволило широко использовать модифицированные варианты для исследования биологических объектов. Таким образом, полуэмпирические квантовохимические методы можно использовать с большим практическим выходом для изучения реакционной способности различных химических соединений.
1.5 Определение спектра биологической активности с помощью программы PASS C&T (Prediction of Activity Spectra for Substances: Complex & Training) Современная версия компьютерной системы предсказания спектра биологической активности PASS C&T (P rediction of A ctivity S pectra for S ubstances: C omplex & T raining) реализована в 1998 году. Она включает в себя обучающую выборку, содержащую более 45000 биологически активных веществ с известной биологической активностью, и охватывает более 400 фармакологических эффектов, механизмов действия, а также мутагенность, канцерогенность, тератогенность и эмбриотоксичность. Работа PASS основана на анализе зависимостей «структура-активность» для веществ из обучающей выборки, содержащей более 45000 разнообразных биологически активных веществ (субстанции известных лекарственных препаратов и фармакологически активные соединения). Обучающая выборка постоянно пополняется новой информацией о биологически активных веществах, отбираемой как из публикаций в научно-технической литературе, так и из многочисленных баз данных. Химическая структура представлена в PASS в виде оригинальных MNA дескрипторов (Mulilevel Neighbourhoods of Atoms). MNA дескрипторы имеют универсальный характер и с достаточно хорошей точностью описывают разнообразные зависимости «структура-свойство». Используемый в PASS математический алгоритм был отобран путем целенаправленного анализа и сравнения эффективности для решения подобных задач большого числа различных методов. Показано, что данный алгоритм обеспечивает получение устойчивых в статистическом смысле зависимостей “структура-активность” и, соответственно, результатов прогноза. Это очень важно, поскольку включенные в обучающую выборку данные всегда обладают определенной неполнотой как в отношении охвата всех химических классов веществ, имеющих конкретный вид активности, так и в отношении изученности каждого отдельного вещества на все возможные виды активности. Средняя точность прогноза при скользящем контроле составляет свыше 85%. Скользящий контроль проводится следующим образом: из обучающей выборки поочередно удаляется одно вещество и для него делается прогноз на основе анализа оставшейся части обучающей выборки, результат сравнивается с известными экспериментальными данными. Процедура повторяется итеракивно для каждого из веществ и рассчитывается средняя точность прогноза. Точность прогноза в 85% достаточна для практического применения системы PASS с целью прогноза спектра биологической активности новых веществ, поскольку ожидаемая вероятность случайного угадывания одного из 780 видов активности составляет около 0.1%. Результаты прогноза выдаются пользователю в виде списка названий вероятных видов активности с расчетными оценками вероятностей наличия (Pa) и отсутствия каждого вида активности (Pi), которые имеют значения от 0 до 1. Эти вероятности рассчитываются независимо по подвыборкам активных и неактивных соединений, и поэтому их сумма не равна единице. Pa и Pi интерпретируются как оценки меры принадлежности вещества к классам активных и неактивных соединений соответственно, либо как оценки ошибок первого и второго рода. Чем больше для конкретной активности величина Pa и чем меньше величина Pi, тем больше шанс обнаружить данную активность в эксперименте. Если при анализе прогнозируемого списка активностей для исследования выбираются те виды активности, для которых Pa>90%, то мы рискуем пропустить около 90% действительно активных соединений, но вероятность ложноположительных прогнозов при этом ничтожно мала; для Pa>80% - пропустим уже только 80% активных соединений, но и вероятность ложноположительных прогнозов будет выше, наконец, для Pa>Pi вероятности ошибок первого и второго рода равны. На практике, однако, при отборе для исследования наиболее перспективных веществ руководствуются и другими критериями, например, критерием новизны. При этом исходят из того, что чем ближе значение Pa к единице, тем более вероятно, что вещество является близким аналогом известного препарата. Поэтому, если целью исследователя является выявление соединений с достаточно высоким уровнем новизны (New Chemical Entity, NCE), то надо выбирать вещества, для которых величина прогнозируемой вероятности Pa для требуемого вида активности несколько ниже, например, 0,5<PA< NCE.
Базируясь на данных компьютерного прогноза, исследователь может: · определить, какие тесты наиболее адекватны для изучения биологической активности конкретного химического соединения. · обнаружить новые эффекты и механизмы действия для ранее изученных веществ; · отобрать наиболее вероятные базовые структуры новых лекарств с требуемым биологическим действием среди доступных для скрининга химических соединений. Система PASS позволяет получить прогноз спектра биологической активности 1000 веществ на обычном персональном компьютере менее чем за одну минуту. Поскольку прогноз выполняется по структурной формуле вещества, он может быть выполнен уже на стадии планирования синтеза. Применимость PASS для решения практических задач продемонстрирована в многочисленных экспериментах. Прогнозируемые виды активности подтверждены для веществ различных химических классов, проявляющих разнообразные эффекты: противобактериальный, антиаритмический, противоопухолевый, гепатопротекторный, антиамнестический, противоспалительный, антиоксидантный и др. С применением PASS при поддержке гранта CRDF (RC1-2064) был выполнен прогноз спектра биологической активности для 250000 химических соединений. Кроме того, если, наряду с основным действием, известен перечень нежелательных побочных эффектов, то при отборе перспективных для исследований соединений можно руководствоваться комбинированным критерием: · наличие в прогнозируемом спектре требуемых эффектов/механизмов; · отсутствие нежелательных эффектов/механизмов. Естественно, что при рассмотрении всего списка, включающего свыше 400 прогнозируемых PASS C&T видов активности, можно составить большое количество комбинаций из требуемых и нежелательных эффектов. Для их анализа сотрудник Лаборатории структурно-функционального конструирования лекарств НИИ Биомедхимии РАМН А. А. Лагунин разработал специальную компьютерную систему интерпретации спектров биологической активности веществ IBIAC, основанную на знаниях об известных взаимосвязях между фармакологическими эффектами и механизмом действия биологически активных веществ (более 2000 терминов, описывающих биологическую активность). С использованием системы IBIAC генерация перечня эффектов, соответствующих определенному механизму действия и, наоборот, списка вероятных механизмов, ответственных за проявление определенного эффекта, осуществляется автоматически. Поскольку прогноз спектра биологической активности осуществляется на основе структурной формулы химического соединения, он может быть выполнен уже на этапе планирования синтеза. В итоге будут синтезированы лишь некоторые из теоретически возможных производных, в наибольшей степени удовлетворяющие критериям задачи. Необходимо отметить, что прогноз спектра биологической активности возможен для низкомолекулярных органических (drug-like) соединений, структура которых не отличается принципиально от веществ обучающей выборки. Не имеет смысла прогноз для синтетических и биополимеров, для неорганических веществ и т.п.
|
||||||||
Последнее изменение этой страницы: 2016-09-18; просмотров: 1172; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.183.161 (0.008 с.) |