Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

OLAP - удобный инструмент анализа

Поиск

Централизация и удобное структурирование - это далеко не все, что нужно аналитику. Ему ведь еще требуется инструмент для просмотра, визуализации информации. Традиционные отчеты, даже построенные на основе единого хранилища, лишены одного - гибкости. Их нельзя "покрутить", "развернуть" или "свернуть", чтобы получить желаемое представление данных. Конечно, можно вызвать программиста, и он сделает новый отчет достаточно быстро - скажем, в течение определенного времени. Получается, что аналитик может проверить за день не более двух идей. А ему (если он хороший аналитик) таких идей может приходить в голову по нескольку в час. И чем больше "срезов" и "разрезов" данных аналитик видит, тем больше у него идей, которые, в свою очередь, для проверки требуют все новых и новых "срезов". Вот бы ему такой инструмент, который позволил бы разворачивать и сворачивать данные просто и удобно! В качестве такого инструмента и выступает OLAP.

Хотя OLAP и не представляет собой необходимый атрибут хранилища данных, он все чаще и чаще применяется для анализа накопленных в этом хранилище сведений.

Компоненты, входящие в типичное хранилище данных, представлены на рис. 24.

Рис.24. Структура хранилища данных

 

Оперативные данные собираются из различных источников, очищаются, интегрируются и складываются в реляционное хранилище. При этом они уже доступны для анализа при помощи различных средств построения отчетов. Затем данные (полностью или частично) подготавливаются для OLAP-анализа. Они могут быть загружены в специальную БД OLAP или оставлены в реляционном хранилище. Важнейшим его элементом являются метаданные, т. е. информация о структуре, размещении и трансформации данных. Благодаря им обеспечивается эффективное взаимодействие различных компонентов хранилища.

Итак, можно определить OLAP как совокупность средств многомерного анализа данных, накопленных в хранилище. Теоретически средства OLAP можно применять и непосредственно к оперативным данным или их точным копиям (чтобы не мешать оперативным пользователям). Но мы тем самым рискуем снова начать анализировать оперативные данные, которые напрямую для анализа непригодны.

Определение и основные понятия OLAP

Термин OLAP - это Online Analytical Processing, т. е. оперативный анализ данных. Двенадцать определяющих принципов OLAP сформулировал в 1993 г. Е. Ф. Кодд - основоположник реляционных БД. Позже его определение было переработано в так называемый тест FASMI, требующий, чтобы OLAP-приложение предоставляло возможности быстрого анализа разделяемой многомерной информации (подробнее):

Fast (Быстрый) - анализ должен производиться одинаково быстро по всем аспектам информации. Приемлемое время отклика - 5 с или менее.

Analysis (Анализ) - должна быть возможность осуществлять основные типы числового и статистического анализа, предопределенного разработчиком приложения или произвольно определяемого пользователем.

Shared (Разделяемой) - множество пользователей должно иметь доступ к данным, при этом необходимо контролировать доступ к конфиденциальной информации.

Multidimensional (Многомерной) - это основная, наиболее существенная характеристика OLAP.

Information (Информации) - приложение должно иметь возможность обращаться к любой нужной информации, независимо от ее объема и места хранения.

OLAP = многомерное представление = Куб. OLAP предоставляет удобные быстродействующие средства доступа, просмотра и анализа деловой информации. Пользователь получает естественную, интуитивно понятную модель данных, организуя их в виде многомерных кубов (Cubes). Осями многомерной системы координат служат основные атрибуты анализируемого бизнес-процесса. Например, для продаж это могут быть товар, регион, тип покупателя. В качестве одного из измерений используется время. На пересечениях осей - измерений (Dimensions) - находятся данные, количественно характеризующие процесс - меры (Measures). Это могут быть объемы продаж в штуках или в денежном выражении, остатки на складе, издержки и т. п. Пользователь, анализирующий информацию, может "разрезать" куб по разным направлениям, получать сводные (например, по годам) или, наоборот, детальные (по неделям) сведения и осуществлять прочие манипуляции, которые ему придут в голову в процессе анализа. В качестве мер в трехмерном кубе, изображенном на рис. 25, использованы суммы продаж, а в качестве измерений - время, товар и магазин. Измерения представлены на определенных уровнях группировки: товары группируются по категориям, магазины - по странам, а данные о времени совершения операций - по месяцам.

Рис. 25. Пример куба

 

"Разрезание" куба. Даже трехмерный куб сложно отобразить на экране компьютера так, чтобы были видны значения интересующих мер. Что уж говорить о кубах с количеством измерений, большим трех? Для визуализации данных, хранящихся в кубе, применяются, как правило, привычные двумерные, т. е. табличные, представления, имеющие сложные иерархические заголовки строк и столбцов. Двумерное представление куба можно получить, "разрезав" его поперек одной или нескольких осей (измерений): для этого фиксируем значения всех измерений, кроме двух, - и получаем обычную двумерную таблицу. В горизонтальной оси таблицы (заголовки столбцов) представлено одно измерение, в вертикальной (заголовки строк) - другое, а в ячейках таблицы - значения мер. При этом набор мер фактически рассматривается как одно из измерений - либо выбирается для показа одна мера (и тогда можно разместить в заголовках строк и столбцов два измерения), либо показывать несколько мер (и тогда одну из осей таблицы займут названия мер, а другую - значения единственного "неразрезанного" измерения). На на рис. 26 изображен двумерный срез куба для одной меры - Unit Sales (продано штук) и двух "неразрезанных" измерений - Store (Магазин) и Время (Time).

 

 

Рис. 26. Двумерный срез куба для одной меры

 

На рис. 27 представлено лишь одно "неразрезанное" измерение - Store, но зато здесь отображаются значения нескольких мер - Unit Sales (продано штук), Store Sales (сумма продажи) и Store Cost (расходы магазина).

 

Рис. 27. Двумерный срез куба для нескольких мер

 

Двумерное представление куба возможно и тогда, когда "неразрезанными" остаются и более двух измерений. При этом на осях среза (строках и столбцах) будут размещены два или более измерений "разрезаемого" куба - см. рис. 28.

 

Рис. 28. Двумерный срез куба с несколькими измерениями на одной оси

Метки. Значения, "откладываемые" вдоль измерений, называются членами или метками (members). Метки используются как для "разрезания" куба, так и для ограничения (фильтрации) выбираемых данных - когда в измерении, остающемся "неразрезанным", интересуют не все значения, а их подмножество, например три города из нескольких десятков. Значения меток отображаются в двумерном представлении куба как заголовки строк и столбцов.

Иерархии и уровни. Метки могут объединяться в иерархии, состоящие из одного или нескольких уровней (levels). Например, метки измерения "Магазин" (Store) естественно объединяются в иерархию с уровнями: All (Мир), Country (Страна), State (Штат), City (Город), Store (Магазин). В соответствии с уровнями иерархии вычисляются агрегатные значения, например объем продаж для USA (уровень "Country") или для штата California (уровень "State"). В одном измерении можно реализовать более одной иерархии - скажем, для времени: {Год, Квартал, Месяц, День} и {Год, Неделя, День}.



Поделиться:


Последнее изменение этой страницы: 2016-09-13; просмотров: 258; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.108.125 (0.01 с.)