Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
OLAP - удобный инструмент анализаСодержание книги
Поиск на нашем сайте
Централизация и удобное структурирование - это далеко не все, что нужно аналитику. Ему ведь еще требуется инструмент для просмотра, визуализации информации. Традиционные отчеты, даже построенные на основе единого хранилища, лишены одного - гибкости. Их нельзя "покрутить", "развернуть" или "свернуть", чтобы получить желаемое представление данных. Конечно, можно вызвать программиста, и он сделает новый отчет достаточно быстро - скажем, в течение определенного времени. Получается, что аналитик может проверить за день не более двух идей. А ему (если он хороший аналитик) таких идей может приходить в голову по нескольку в час. И чем больше "срезов" и "разрезов" данных аналитик видит, тем больше у него идей, которые, в свою очередь, для проверки требуют все новых и новых "срезов". Вот бы ему такой инструмент, который позволил бы разворачивать и сворачивать данные просто и удобно! В качестве такого инструмента и выступает OLAP. Хотя OLAP и не представляет собой необходимый атрибут хранилища данных, он все чаще и чаще применяется для анализа накопленных в этом хранилище сведений. Компоненты, входящие в типичное хранилище данных, представлены на рис. 24. Рис.24. Структура хранилища данных
Оперативные данные собираются из различных источников, очищаются, интегрируются и складываются в реляционное хранилище. При этом они уже доступны для анализа при помощи различных средств построения отчетов. Затем данные (полностью или частично) подготавливаются для OLAP-анализа. Они могут быть загружены в специальную БД OLAP или оставлены в реляционном хранилище. Важнейшим его элементом являются метаданные, т. е. информация о структуре, размещении и трансформации данных. Благодаря им обеспечивается эффективное взаимодействие различных компонентов хранилища. Итак, можно определить OLAP как совокупность средств многомерного анализа данных, накопленных в хранилище. Теоретически средства OLAP можно применять и непосредственно к оперативным данным или их точным копиям (чтобы не мешать оперативным пользователям). Но мы тем самым рискуем снова начать анализировать оперативные данные, которые напрямую для анализа непригодны. Определение и основные понятия OLAP Термин OLAP - это Online Analytical Processing, т. е. оперативный анализ данных. Двенадцать определяющих принципов OLAP сформулировал в 1993 г. Е. Ф. Кодд - основоположник реляционных БД. Позже его определение было переработано в так называемый тест FASMI, требующий, чтобы OLAP-приложение предоставляло возможности быстрого анализа разделяемой многомерной информации (подробнее): Fast (Быстрый) - анализ должен производиться одинаково быстро по всем аспектам информации. Приемлемое время отклика - 5 с или менее. Analysis (Анализ) - должна быть возможность осуществлять основные типы числового и статистического анализа, предопределенного разработчиком приложения или произвольно определяемого пользователем. Shared (Разделяемой) - множество пользователей должно иметь доступ к данным, при этом необходимо контролировать доступ к конфиденциальной информации. Multidimensional (Многомерной) - это основная, наиболее существенная характеристика OLAP. Information (Информации) - приложение должно иметь возможность обращаться к любой нужной информации, независимо от ее объема и места хранения. OLAP = многомерное представление = Куб. OLAP предоставляет удобные быстродействующие средства доступа, просмотра и анализа деловой информации. Пользователь получает естественную, интуитивно понятную модель данных, организуя их в виде многомерных кубов (Cubes). Осями многомерной системы координат служат основные атрибуты анализируемого бизнес-процесса. Например, для продаж это могут быть товар, регион, тип покупателя. В качестве одного из измерений используется время. На пересечениях осей - измерений (Dimensions) - находятся данные, количественно характеризующие процесс - меры (Measures). Это могут быть объемы продаж в штуках или в денежном выражении, остатки на складе, издержки и т. п. Пользователь, анализирующий информацию, может "разрезать" куб по разным направлениям, получать сводные (например, по годам) или, наоборот, детальные (по неделям) сведения и осуществлять прочие манипуляции, которые ему придут в голову в процессе анализа. В качестве мер в трехмерном кубе, изображенном на рис. 25, использованы суммы продаж, а в качестве измерений - время, товар и магазин. Измерения представлены на определенных уровнях группировки: товары группируются по категориям, магазины - по странам, а данные о времени совершения операций - по месяцам. Рис. 25. Пример куба
"Разрезание" куба. Даже трехмерный куб сложно отобразить на экране компьютера так, чтобы были видны значения интересующих мер. Что уж говорить о кубах с количеством измерений, большим трех? Для визуализации данных, хранящихся в кубе, применяются, как правило, привычные двумерные, т. е. табличные, представления, имеющие сложные иерархические заголовки строк и столбцов. Двумерное представление куба можно получить, "разрезав" его поперек одной или нескольких осей (измерений): для этого фиксируем значения всех измерений, кроме двух, - и получаем обычную двумерную таблицу. В горизонтальной оси таблицы (заголовки столбцов) представлено одно измерение, в вертикальной (заголовки строк) - другое, а в ячейках таблицы - значения мер. При этом набор мер фактически рассматривается как одно из измерений - либо выбирается для показа одна мера (и тогда можно разместить в заголовках строк и столбцов два измерения), либо показывать несколько мер (и тогда одну из осей таблицы займут названия мер, а другую - значения единственного "неразрезанного" измерения). На на рис. 26 изображен двумерный срез куба для одной меры - Unit Sales (продано штук) и двух "неразрезанных" измерений - Store (Магазин) и Время (Time).
Рис. 26. Двумерный срез куба для одной меры
На рис. 27 представлено лишь одно "неразрезанное" измерение - Store, но зато здесь отображаются значения нескольких мер - Unit Sales (продано штук), Store Sales (сумма продажи) и Store Cost (расходы магазина).
Рис. 27. Двумерный срез куба для нескольких мер
Двумерное представление куба возможно и тогда, когда "неразрезанными" остаются и более двух измерений. При этом на осях среза (строках и столбцах) будут размещены два или более измерений "разрезаемого" куба - см. рис. 28.
Рис. 28. Двумерный срез куба с несколькими измерениями на одной оси Метки. Значения, "откладываемые" вдоль измерений, называются членами или метками (members). Метки используются как для "разрезания" куба, так и для ограничения (фильтрации) выбираемых данных - когда в измерении, остающемся "неразрезанным", интересуют не все значения, а их подмножество, например три города из нескольких десятков. Значения меток отображаются в двумерном представлении куба как заголовки строк и столбцов. Иерархии и уровни. Метки могут объединяться в иерархии, состоящие из одного или нескольких уровней (levels). Например, метки измерения "Магазин" (Store) естественно объединяются в иерархию с уровнями: All (Мир), Country (Страна), State (Штат), City (Город), Store (Магазин). В соответствии с уровнями иерархии вычисляются агрегатные значения, например объем продаж для USA (уровень "Country") или для штата California (уровень "State"). В одном измерении можно реализовать более одной иерархии - скажем, для времени: {Год, Квартал, Месяц, День} и {Год, Неделя, День}.
|
||||
Последнее изменение этой страницы: 2016-09-13; просмотров: 258; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.108.125 (0.01 с.) |