Физические основы радиационной гигиены 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Физические основы радиационной гигиены



ФИЗИЧЕСКИЕ ОСНОВЫ РАДИАЦИОННОЙ ГИГИЕНЫ

Контрольные вопросы.

1. Радиоактивность, виды радиоактивных превращений.

2. Закон радиоактивного распада.

3. Виды излучений (корпускулярные, электромагнитные), их основные свойства.

4. Взаимодействие корпускулярных излучений с веществом.

5. Взаимодействие электромагнитных излучений с веществом.

6. Дозы излучения, единицы измерения.

7. Детерминированные и стохастические эффекты.

Радиоактивность - самопроизвольное превращение ядер атомов, сопровождающееся испусканием ионизирующих излучений.

Различают следующие виды радиоактивных превращений:

1. Альфа-распад. Характерен для естественных радиоактивных элементов с большими порядковыми номерами (стоящих после свинца в ПСЭ Менделеева) и, соответственно, с малыми энергиями связи частиц ядра. Альфа-распад приводит к уменьшению порядкового номера радионуклида на 2 единицы и массового числа на 4. При распаде могут возникать возбужденные ядра, которые, переходя в основное состояние, испускают гамма-кванты.

2. Электронный бета-распад. Характерен как для естественных, так и для искусственных радиоактивных элементов. При этом виде распада ядро испускает электрон, в результате заряд его увеличивается на единицу при неизменном массовом числе. Ядра возникших атомов могут находиться в возбужденном состоянии, переход их в невозбужденное состояние сопровождается испусканием гамма-квантов.

3. Позитронный бета-распад. Наблюдается у некоторых искусственных радиоизотопов. При этом порядковый номер атома уменьшается на единицу, а масса не изменяется.

4. К-захват (захват орбитального электрона ядром) - ядро захватывает электрон с К-оболочки и имеет место такое же превращение ядра, как и при позитронном бета-распаде. Из ядра при К-захвате выбрасывается нейтрино и имеет место характеристическое рентгеновское излучение.

5. Самопроизвольное деление ядер. Наблюдается у радиоактивных элементов с большим атомным номером (уран-235, плутоний) при захвате их ядрами медленных нейтронов. При делении образуется пара осколков с выбросом нейтронов. Осколки, как правило, ядра элементов средних массовых чисел, которые претерпевают несколько последовательных бета-распадов.

Количественной характеристикой радиоактивности является АКТИВНОСТЬ, единицей измерения которой принят беккерель (Бк). Беккерель соответствует активности, равной одному ядерному превращению в секунду. Специальной (внесистемной) единицей является кюри (Ки). 1 Ки соответствует такое количество препарата, в котором за 1 сек происходит 3,7×1010ядерных превращений, т.е. 1 Ки = 3,7×1010Бк. Кюри — очень большая величина. В практической работе используют производные единицы: милликюри (мКи), микро­кюри (мкКи). Таким образом, можно записать:

1 Kи = 3,7×1010 расп./с = 2,22×1012расп./мин:

1 мКи = 10-3Ки = 3,7×107pacп./c = 2,22×109расп./мин:

1 мкКи = 10-6Ки = 3,7×104расп./с = 2,22×106расп./мин:

В качестве единицы активности веществ-гамма-излучателей нередко используют миллиграмм-эквивалент радия (мг/экв), представляющий собой количество препарата, создающего такую же мощность дозы, как и 1 мг радия в тождественных условиях измерения.

Закономерностью радиоактивного распада является то, что в единицу времени распадается определенная, строго постоянная доля атомов каждого радионуклида (независимо от их количества), которая и определяет его период полураспада (Т1/2) - промежуток времени, в течение которого распадается половина всех атомов данного радионуклида.

Период полураспада указывает на степень устойчивости ядра атома. Единицы измерения: с, ч, день и т. д.

Период полураспада и постоянная распада связаны между собой соотношением:

T1/2=0,693/λ,

Отсюда видно, что чем меньше значение постоянной распада, тем больше значение периода полураспада (распад идет медленнее) и, наоборот, чем больше значение постоянной распада, тем меньше значение периода полураспада. Следует отметить, что значения периода полураспада и постоянной распада не зависят от внешних условий и определяются лишь свойствами самого радиоактивного ядра. Естественно, каждый радиоактивный изотоп имеет свое значение периода по­лураспада и постоянной распада. Численные значения этих величин определяются экспериментально.

Т1/2 у различных элементов колеблется в значительных пределах - от долей секунды до нескольких миллионов лет. Например:

3H - 12,46 года 24Na - 15,1 часа 35S - 87 дней 60Со - 5,3 года1 31I - 8,05 дня

14С - 5568 лет 32P - 14,3 дня 45Са - 152 дня 90Sr - 28 лет 238U - 4,5109 лет

Число ядер радиоактивного изотопа уменьшается со временем по экспоненциальному закону. Графически закон радиоактивного распада выражается экспоненциальной кривой (рис.1).

Видно, что с увеличением числа периодов полураспада количество нераспавшихся атомов убывает, приближаясь к нулю. Распад любого радиоактивного элемента подчиняется статистическим закономерностям и носит вероятностный характер.

Рис. 1. Экспоненциальная кривая радиоактивного распада

ВИДЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

1. Корпускулярные

2. Электромагнитные (фотонные).

Корпускулярное излучение - ионизирующее излучение, состоящее из частиц:

· заряженных (альфа-, бета-частиц, протонов и т.д.)

· незаряженных (нейтроны)

Электромагнитное (фотонное) - включает гамма- и рентгеновское излучение.

Любое ионизирующее излучение характеризуется энергией E, измеряемой в электронвольтах (эВ). Электронвольт - энергия, которую приобретает электрон при ускорении в электрическом поле с разностью потенциалов в 1 вольт. Для характеристики ионизирующих излучений используются производные величины - килоэлектронвольт (КэВ, 1 КэВ = 103эВ), мегаэлектронвольт (1 МэВ = 106эВ).

Альфа-излучение представляет собой поток альфа-частиц (ядер атомов гелия), состоящих из 2-х протонов и 2-х нейтронов и имеющих атомную массу 4 и заряд +2. Основной источник гамма-излучения - радиоактивный альфа-распад. Известно более 200 альфа-излучателей, большинство из них - естественные радионуклиды семейства урана, радия и тория.

Диапазон энергий для альфа-частиц составляет от 4 до 9 МэВ, альфа-излучение, как правило, сопровождается излучением гамма-квантов с энергией от 0,036 до 2,76 МэВ.

При взаимодействии альфа-частиц с веществом их энергия расходуется на возбуждение и ионизацию атомов среды. Альфа-излучение характеризуется высокой линейной плотностью ионизации (ЛПИ) и линейной передачей энергии (ЛПЭ). ЛПИ - это число пар ионов, образующихся на единице длины пробега частиц (пар ионов/мкм). ЛПЭ - количество энергии, переданной веществу заряженной частицей на единице длины ее пробега (КэВ/мкм). Ионизирующее излучение, у которого ЛПЭ менее 10 КэВ/мкм, относится к редкоионизирующим, а более 10 КэВ/мкм – к плотноионизирующим излучениям. В среднем ЛПЭ для альфа-частиц в биологических тканях составляет 100 КэВ/мкм, что значительно выше, чем для других заряженных частиц. Поэтому альфа-излучение относится к плотноионизирующим и альфа-частица имеет незначительную проникающую способность: в воздухе - до 3 см, в мышечной ткани, воде - около 50 мкм, в костной ткани, алюминии - около. 17 мкм. Внешнее облучение альфа-частицами не представляет опасности, поскольку последние не проникают глубже отмирающих слоев кожного эпителия. Очень опасно внутреннее альфа-облучение при инкорпорировании радионуклидов. Защита при работе с альфа-излучателями должна быть направлена на исключение любой потенциальной возможности попадания радиоактивных веществ в организм с вдыхаемым воздухом, пищей и водой.

 

В отличие от альфа-излучающих радионуклидов, бета-излучатели рассеяны по всей таблице Менделеева, начиная от водорода и до трансурановых элементов. Средняя энергия бета-частиц ≤ 3 МэВ. При прохождении бета-частиц через вещество имеют место упругие и неупругие взаимодействия с атомами среды. Упругие взаимодействия заключаются в том, что сумма кинетических энергий взаимодействующих частиц после взаимодействия остается неизменной. При неупругом взаимодействии часть энергии взаимодействующих частиц передается образовавшимся свободным частицам или квантам (неупругое рассеивание, ионизация и возбуждение атомов, возбуждение ядер, тормозное излучение). По радиобиологическим характеристикам бета-излучение относится к редкоионизирующим, удельная плотность ионизации примерно в 1000 раз меньше, чем у альфа-излучения. Несмотря на это, внешнее облучение бета-частицами представляет опасность для человека. Критические органы - кожа и хрусталик глаза. Пробег бета-частиц в воздухе - до 11 м, в мышечной ткани, воде - около 17 мм, в костной ткани, алюминии - 5,5 мм. При взаимодействии бета-излучения с веществом возникает тормозное электромагнитное излучение. Выход его пропорционален атомному номеру и плотности вещества, поэтому для защиты используют вещества с малым атомным номером - алюминий, органическое стекло, воду. При высокой активности бета-источника тормозное излучение может быть настолько интенсивным, что требуется защита и от него, т.е. к легкому материалу защиты от бета-излучения необходимо добавить еще один слой из тяжелых материалов, например, свинца.

 

Рентгеновское и гамма-излучения относятся к электромагнитным. Рентгеновское представляет собой совокупность характеристического и тормозного излучений (характеристическое излучение испускается при изменении энергетического состояния атома, тормозное - при изменении кинетической энергии заряженных частиц). Возникает в защите источников бета-излучения, рентгеновских трубках, ускорителях электронов и т.д.

R-излучение получают в рентгеновской трубке при торможении электронов. Катод с нитью накала испускает электроны, которые ускоряясь в электрическом поле, тормозятся на аноде. При торможении происходит преобразование энергии, причем 98-99% ее переходит в тепловую (нагрев анода), а 1-2% преобразуется в тормозное излучение (в данном случае - рентгеновское). Мощность дозы тормозного R-излучения зависит от:

· силы тока

· материала анода (атомного номера)

· напряжения на трубке

Источниками R-излучения являются все электровакуумные приборы высоких напряжений, телевизионные трубки, мониторы, усилительные лампы, приборы СВЧ-диапазона, электронно-лучевые установки для резки и сварки металлов в вакууме (неиспользуемое R-излучение), а также ускорительные устройства, работающие на тормозный пучок, микротроны, линейные ускорители и, конечно, рентгеновские трубки (используемое R-излучение).

Гамма-излучение испускается при ядерных превращениях:

· радиоактивном распаде (бета- и альфа-распады);

· аннигиляции электронов и позитронов;

· делении ядер - при этом осколки находятся в возбужденном состоянии, следствием чего является испускание гамма-квантов;

· взаимодействии нейтронов с веществом.

Принципы взаимодействия рентгеновского и гамма-излучений с веществом идентичны. Эти излучения называют косвенноионизирующими, т.к. процесс ионизации опосредован через ряд первичных эффектов, основными из которых являются:

1. Фотоэффект - вместо фотона после его взаимодействия с веществом излучается электрон (при низкой энергии (1 – 500 КэВ) кванта). Энергия падающего кванта полностью поглощается веществом, в результате появляются свободные электроны, обладающие определенной кинетической энергией, величина которой равна энергии кванта излучения за вычетом работы выхода данного электрона. Свободный электрон, ассоциируясь с нейтральным атомом, порождает отрицательный ион.

 

Рис. 2. Схема фотоэффекта

 

Фотоэффект характерен только для длинноволнового рентгеновского излучения. Его вклад во взаимодействие пропорционален Z ядер атомов (~Z3).

2. С повышением энер­гии излучения вероятность фотоэффекта очень быстро уменьшается, и для излучений с энергией около 1 МэВ, его вкладом во взаимодействие можно пренебречь; главную роль при этом играет другой способ размена энергии — эффект Комптона.

Комптоновский эффект – энергия кванта частично поглощаются веществом, в результате образуется электрон и рассеянное излучение, энергия которого всегда меньше энергии первичного излучения. При этом эффекте происходит рассеяние падающего фотона излучения электроном атома, которому передается лишь часть энергии фотона.

 

Рис. 3. Схема Комптон-эффекта

 

Так как направление движения фотона отличается от первоначального, то говорят о рассеянии фотона на электроне. В дальнейшем фотон может вновь претерпевать Комптон-эффект и т. д.

Поэтому в отличие от фотоэлектронов энергия электронов отдачи, образующихся при эффекте Комптона, изменяется в широких пределах (от нуля до некоторого максимального значения). Средняя их энергия возрастает с увеличением энергии падающего излучения. Доля энергии, поглощенной комптоновскими электронами, в общем количестве поглощенной энергии увеличивается с жесткостью излучения.

3. Наконец, третий вид взаимодействия излучения с веществом - эффект образования заряженных пар - характеризуется возможностью превращения γ -кванта большой энергии (>1,02 Мэв) в пару частиц - электрон и позитрон. Энергия гамма-кванта преобразуется в энергию заряженных частиц - электрона и позитрона (при большой энергии гамма-кванта). Этот процесс вызывается столкновением γ-кванта с какой-либо заряженной частицей, например атомным ядром, в поле которой и образуется электронно-позитронная пара. Относительный вклад этого вида взаимодействия изменяется пропорционально Z3 и поэтому для тяжелых элементов он больше, чем для легких.

Рис. 4. Схема образования электронно-позитронных пар

Следовательно, в зависимости от энергии падающего излучения преобладает тот или иной вид его взаимодействия с веществом. В большинстве случаев при облучении биологических объектов энергия используемого электромагнитного излучения находится в диапазоне 0,2—2 МэВ, поэтому наибольшей вероятностью обладает Комптон-эффект.

По радиобиологической характеристике R и гамма-излучения относятся к редкоионизирующим. Это проникающие излучения, имеют большие значения длины свободного пробега, который зависит от энергии излучения (в воздухе - до несколько км, в теле человека ослабляется в 3-4 раза). Средняя длина их пробега в веществе зависит также от его плотности. Она минимальна в материалах, подобных свинцу, используемых обычно в качестве защитных экранов. Защита от проникающего излучения основана на использовании материалов, содержащих тяжелые элементы - свинец, обедненный уран. Для стационарной защиты применяется монолитный гидратированный бетон, в рентгеновских кабинетах - баритовая штукатурка.

ДОЗЫ ИЗЛУЧЕНИЯ

Доза есть количественная характеристика излучения, и определяется энергией, поглощенной веществом.

Поглощенная доза - фундаментальная дозиметрическая величина - есть количество энергии излучения, поглощенное единицей массы облучаемого тела. В системе СИ поглощенная доза измеряется в Дж/кг и имеет специальное название - Грей (Гр), производные единицы – миллигрей (мГр), микрогрей (мкГр). Использовавшаяся ранее внесистемная единица «рад» равна 0,01 Гр.

D = de/dm,

где de - средняя энергия, переданная ионизирующим излучением веществу, находящемуся в элементарном объеме, a dm - масса вещества в этом объеме.

Но эта величина не учитывает того, что при одинаковой поглощенной дозе разные виды излучения вызывают разный биологический эффект.

Поэтому введено понятие эквивалентная доза - это поглощенная доза, умноженная на коэффициент, отражающий способность данного вида излучения повреждать ткани организма (взвешивающий коэффициент)

HT,R = DT,R × WR

где DT,R - средняя поглощенная доза в органе или ткани Т, a WR - взвешивающий коэффициент для излучения R.

При воздействии различных видов излучений с различными взвешивающими коэффициентами эквивалентная доза определяется как сумма эквивалентных доз этих излучений:

HT = ∑ HT,R

Единицей измерения эквивалентной дозы является Зиверт (Зв), производные единицы – миллизиверт (мЗв), микрозиверт (мкЗв). Специальная (внесистемная) единица – Бэр, которая равна 0,01 Зв.

Взвешивающий коэффициент выступает как регламентированное значение относительной биологической эффективности (ОБЭ). ОБЭ определяется отношением дозы рентгеновского излучения к дозе любого другого вида излучения, вызывающей тот же биологический эффект. Например, гибель культуры клеток в эксперименте вызывают 10 Гр рентгеновского излучения и 0,5 Гр альфа-излучения. Значит, ОБЭ = DR/Dα = 10/0,5 = 20. Таким образом ОБЭ = 20 означает, что биологический эффект при воздействии альфа-излучения в 20 раз выше, чем рентгеновского излучения. Относительная биологическая эффективность находится в прямой зависимости от линейной передачи энергии (ЛПЭ). При воздействии ионизирующего излучения на организм человека следует учитывать и другие факторы, например, равномерность или неравномерность облучения, распределение дозы во времени, пол, возраст, соматическое состояние и т.д. Концепция ОБЭ, таким образом, применима только в радиобиологии. Для нормирования же в радиационной гигиене используется взвешивающий коэффициент (WR). Значения взвешивающих коэффициентов составляют 1 (для фотонов и электронов), 20 (для альфа-частиц и тяжелых ядер отдачи), от 5 до 20 для нейтронов в зависимости от их энергии.

Эффективная доза (E) - величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органе (H) на соответствующий взвешивающий коэффициент для данного органа или ткани:

E =HT × WT,

где E - эффективная доза; HT - эквивалентная доза в ткани Т; WT - взвешивающий коэффициент для ткани Т.

Единица измерения эффективной дозы - Зиверт (Зв).

Нормами радиационной безопасности (НРБ-99) также определены понятия «доза на орган», «доза эквивалентная или эффективная ожидаемая», «доза эффективная коллективная». Доза эффективная коллективная - мера коллективного риска возникновения стохастических эффектов облучения; она равна сумме индивидуальных эффективных доз. Единица эффективной коллективной дозы - человеко-зиверт (чел.-Зв).

МОЩНОСТЬ ДОЗЫ - отношение приращения дозы (поглощенной, эквивалентной, эффективной) dD, dH, dE за интервал времени dt к этому интервалу времени: D=dD/dt (Гр/сек), H=dH/dt (Зв/сек), E=dE/dt (Зв/сек). На практике за единицу времени могут приниматься час, минута. В литературе и практике дозиметрического контроля продолжают широко использоваться также такие понятия, как экспозиционная доза и мощность экспозиционной дозы.

ЭКСПОЗИЦИОННАЯ ДОЗА (X) определяется электрическим зарядом ионов разного знака, возникающих при ионизации в 1 кг сухого воздуха. Используется только для регистрации и оценки дозы рентгеновского и гамма-излучений в воздухе. Единицы измерения в системе СИ - кулон на килограмм (Кл/кг), внесистемная единица экспозиционной дозы - рентген (Р), производные – миллирентген (мР), микрорентген (мкР).

1Р = 2,58 × 10-4 Кл/кг

Экспозиционная доза, отнесенная к единице времени, называется мощностью экспозиционной дозы и измеряется в амперах на кг (А/кг – системная единица), внесистемные единицы - Р/час, мР/час, мкР/час, мкР/сек и т.д. Зависимость между поглощенной дозой (D) и экспозиционной дозой (X) выражается формулой:

X = f × D,

где f - коэффициент, зависящий от плотности среды. Для воздуха f=0,88, для мышечной ткани, воды -0,95, для костной ткани - 3-4, жировой - 0,5-0,6. Таким образом, в целом для организма человека коэффициент f приблизительно равен 1, следовательно, экспозиционная доза равна поглощенной (как и мощности доз), а 1 рентген равен 0,01 Гр.

 

 

РАДИАЦИОННЫЙ ФОН ИЗЛУЧЕНИЯ

Под радиационным фоном (РФ) понимают ионизирующие излучения от природных источников космического и земного происхождения, а также от искусственных радионуклидов, рассеянных в биосфере в результате деятельности человека.

Различают природный (естественный) радиационный фон и искусственный радиационный фон.

ЕСТЕСТВЕННЫЙ РАДИАЦИОННЫЙ ФОН (ЕРФ) обусловлен ионизирующим излучением от природных источников космического и земного происхождения. Космические лучи представляют собой поток частиц (протонов, альфа-частиц, тяжелых ядер) и жесткого гамма-излучения (это т.н. первичное космическое излучение). При взаимодействии его с атомами и молекулами атмосферы возникает вторичное космическое излучение, состоящее из мезонов и электронов.

Естественные радиоактивные элементы земли условно могут быть разделены на 3 группы:

1. Элементы радиоактивных семейств урана, тория и актиноурана.

2. Не связанные с первой группой радиоактивные элементы - калий-40, кальций-48, рубидий-87 и др.

3. Радиоактивные изотопы, возникающие под воздействием космического излучения - углерод-14 и тритий.

В современных условиях достаточно высокую дозовую нагрузку на население оказывают ионизирующие излучения от природных источников, претерпевших опре­деленные изменения в результате деятельности человека: извлечение из недр полезных ископаемых, внесение минеральных удобрений, строительные материалы (особенно гипс, бетон), воздействие радона (подвалы, первые этажи жилых зданий), сжигание топлива, авиаперелеты и т.д.

ИСКУССТВЕННЫЙ РАДИАЦИОННЫЙ ФОН (ИРФ) обусловлен излучением от рассеянных в биосфере искусственных радионуклидов (цезий-137, стронций-90 и др.), за счет глобальных выпадений и радиационных аварий.

Фоновое облучение человека, обусловленное природными источниками, составляет около 3,5 мЗв/год и складывается из 1 мЗв/год за счет внешнего облучения (в т.ч. облучения за счет космического излучения - 0,3 мЗв/год и естественных радионуклидов - 0,7 мЗв/год), примерно 2,2 мЗв/год за счет радона и 0,3 мЗв за счет пищи и воды (средние значения по РФ в 2003 году).

Усредненный естественный радиационный фон местности складывается из космического излучения и излучения от естественных радионуклидов земли и составляет около 0,12 мкЗв/час или 12 мкр/час.

Оценивая радиационный фон местности, измеряют мощность поглощенной дозы в воздухе на высоте 110 см от поверхности земли. Проводят 3-5 измерений с выведением среднего показателя.

Занятие_12

Контрольные вопросы.

1. Источники ионизирующего излучения, применяемые в медицине. Разновидности медицинского применения ИИИ.

2. Радиационная безопасность персонала, пациентов и населения при проведении рентгенологических процедур.

3. Рентгеновские кабинеты, требования к оборудованию и устройству.

4. Радиационная безопасность при дистанционной, аппликационной, внутриполостной терапии с использованием закрытых ИИИ.

5. Организация защиты при работе с закрытыми источниками ионизирующего излучения.

6. Организация и принципы защиты при работе с радиоактивными веществами в открытом виде.

7. Основные факторы, влияющие на формирование лучевой нагрузки пациентов при рентгенодиагностике

8. Расчетные способы при организации защиты.

9. Радон, источники радона в закрытых помещениях.

 

Общие положения СанПиНа 2.6.1.1192-03

Система обеспечения радиационной безопасности при проведении медицинских рентгенологических исследований должна предусматривать практическую реализацию трех основополагающих принципов радиационной безопасности - нормирования, обоснования и оптимизации.

Принцип нормирования реализуется установлением гигиенических нормативов (допустимых пределов доз) облучения.

Для работников (персонала) средняя годовая эффективная доза равна 20 мЗв (0,02 зиверта) или эффективная доза за период трудовой деятельности (50 лет) - 1000 мЗв (1 зиверт); допустимо облучение в годовой эффективной дозе до 50 мЗв (0,05 зиверта)

Для практически здоровых лиц годовая эффективная доза при проведении профилактических медицинских рентгенологических процедур и научных исследований не должна превышать 1 мЗв (0,001 зиверта).

Принцип обоснования при проведении рентгенологических исследований реализуется с учетом следующих требований:

- приоритетное использование альтернативных (нерадиационных) методов;

- проведение рентгенодиагностических исследований только по клиническим показаниям;

- выбор наиболее щадящих методов рентгенологических исследований;

- риск отказа от рентгенологического исследования должен заведомо превышать риск от облучения при его проведении.

Принцип обоснования при проведении рентгенотерапии реализуется с учетом следующих требований:

- использование метода только в случаях, когда ожидаемая эффективность лечения с учетом сохранения функций жизненно важных органов превосходит эффективность альтернативных (нерадиационных) методов;

- риск отказа от рентгенотерапии должен заведомо превышать риск от облучения при ее проведении.

Принцип оптимизации или ограничения уровней облучения при проведении рентгенологических исследований осуществляется путем поддержания доз облучения на таких низких уровнях, какие возможно достичь при условии обеспечения необходимого объема и качества диагностической информации или терапевтического эффекта.

Обеспечение радиационной безопасности при проведении рентгенологических исследований включает:

- проведение комплекса мер технического, санитарно-гигиенического, медико-профилактического и организационного характера;

- осуществление мероприятий по соблюдению правил, норм и нормативов в области радиационной безопасности;

- информирование населения (пациентов) о дозовых нагрузках, возможных последствиях облучения, принимаемых мерах по обеспечению радиационной безопасности;

- обучение лиц, назначающих и выполняющих рентгенологические исследования, основам радиационной безопасности, методам и средствам обеспечения радиационной безопасности.

Безопасность работы в рентгеновском кабинете обеспечивается посредством:

- применения рентгеновской аппаратуры и оборудования, отвечающих требованиям технических и санитарно-гигиенических нормативов

- обоснованного набора помещений, их расположения и отделки;

- использования оптимальных физико-технических параметров работы рентгеновских аппаратов при рентгенологических исследованиях;

- применения стационарных, передвижных и индивидуальных средств радиационной защиты персонала, пациентов и населения;

- обучения персонала безопасным методам и приемам проведения рентгенологических исследований;

- соблюдения правил эксплуатации коммуникаций и оборудования;

- контроля за дозами облучения персонала и пациентов;

- осуществления производственного контроля за выполнением норм и правил по обеспечению безопасности при рентгенологических исследованиях и рентгенотерапии.

Методы диагностики, профилактики и лечения, основанные на использовании рентгеновского излучения, должны быть утверждены Минздравом России.

В медицинской практике могут быть разрешены к применению рентгеновские аппараты при условии их регистрации Минздравом России

При обращении с рентгеновскими медицинскими аппаратами организации (лечебно-профилактические учреждения, стоматологические клиники, другие юридические лица) обеспечивают проведение индивидуального контроля и учет индивидуальных доз персонала и пациентов.

 

Требования к размещению, организации работы и оборудованию рентгеновского кабинета

Рентгеновское отделение (кабинет) не допускается размещать в жилых зданиях и детских учреждениях. Исключение составляют рентгеностоматологические кабинеты (аппараты). Допускается функционирование рентгеновских кабинетов в поликлиниках, встроенных в жилые здания, если смежные по вертикали и горизонтали помещения не являются жилыми. Допускается размещение рентгеновских кабинетов в пристройке к жилому дому, а также в цокольных этажах, при этом вход в рентгеновское отделение (кабинет) должен быть отдельным от входа в жилой дом.

Рентгеновские кабинеты целесообразно размещать централизованно, в составе рентгеновского отделения, на стыке стационара и поликлиники. Отдельно размещают рентгеновские кабинеты инфекционных, туберкулезных и акушерских отделений больниц и, при необходимости, флюорографические кабинеты приемных отделений и поликлинических отделений.

Рентгеновское отделение, обслуживающее только стационар или только поликлинику, должно размещаться в торцовых частях здания. Отделение не должно быть проходным. Входы в рентгеновское отделение для пациентов стационара и поликлинического отделения выполняются раздельными.

Состав и площади помещений рентгеновского кабинета представлены в таблице 3.

Таблица 3

ПЛОЩАДЬ ПРОЦЕДУРНОЙ С РАЗНЫМИ РЕНТГЕНОВСКИМИ АППАРАТАМИ

Рентгеновский аппарат Площадь, кв.м (не менее)
Рентгенодиагностический комплекс (РДК) с полным набором штативов (ПСШ, стол снимков, стойка снимков, штатив снимков)  
РДК с ПСШ, стойкой снимков, штативом снимков  
РДК с ПСШ и универсальной стойкой-штативом, рентгенодиагностический аппарат с цифровой обработкой изображения  
Аппарат для рентгенодиагностики методом рентгенографии (стол снимков, стойка для снимков, штатив снимков)  
Аппарат для рентгенодиагностики с универсальной стойкой-штативом  
Аппарат для близкодистанционной рентгенотерапии  

 

Размещение рентгеновского аппарата производится таким образом, чтобы первичный пучок излучения был направлен в сторону капитальной стены, за которой размещается менее посещаемое помещение. Не следует направлять прямой пучок излучения в направлении смотрового окна (комнаты управления, защитной ширмы).

Пульт управления рентгеновских аппаратов, как правило, располагается в комнате управления

Для обеспечения возможности контроля за состоянием пациента предусматривается смотровое окно и переговорное устройство громкоговорящей связи

Требования к стационарным средствам радиационной защиты рентгеновского кабинета

Стационарные средства радиационной защиты процедурной рентгеновского кабинета (стены, пол, потолок, защитные двери, смотровые окна, ставни и др.) должны обеспечивать ослабление рентгеновского излучения до уровня, при котором не будет превышен основной предел дозы ПД для соответствующих категорий облучаемых лиц.

Требования к передвижным и индивидуальным средствам радиационной защиты

Средства радиационной защиты персонала и пациентов подразделяются на передвижные и индивидуальные.

К передвижным средствам радиационной защиты относятся: большая защитная ширма персонала (предназначена для защиты от излучения всего тела человека); малая защитная ширма персонала (для защиты нижней части тела человека); малая защитная ширма пациента (для защиты нижней части тела пациента); экран защитный поворотный (для защиты отдельных частей тела человека в положении стоя, сидя или лежа); защитная штора - (для защиты всего тела; может применяться взамен большой защитной ширмы).

К индивидуальным средствам радиационной защиты относятся: шапочка защитная; очки защитные;- воротник защитный - предназначен для защиты щитовидной железы и области шеи; накидка защитная, пелерина – (для защиты плечевого пояса и верхней части грудной клетки); фартук защитный; фартук защитный стоматологический - предназначен для защиты передней части тела, включая гонады, кости таза и щитовидную железу, при дентальных исследованиях или исследовании черепа; жилет защитный; передник для защиты гонад и костей таза; юбка защитная (тяжелая и легкая); перчатки защитные; защитные пластины (в виде наборов различной формы) - предназначены для защиты отдельных участков тела; средства защиты мужских и женских гонад.

Требования по обеспечению радиационной безопасности персонала

Радиационная безопасность персонала рентгеновского кабинета обеспечивается системой защитных мероприятий конструктивного характера при производстве рентгеновских аппаратов, планировочными решениями при их эксплуатации, использованием стационарных, передвижных и индивидуальных средств радиационной защиты, выбором оптимальных условий проведения рентгенологических исследований, осуществлением радиационного контроля.

В рентгенологических исследованиях, сопровождающихся сложными манипуляциями, проведение которых не входит в должностные обязанности персонала рентгеновского кабинета, могут участвовать специалисты (стоматологи, хирурги, урологи, ассистенты хирурга, травматологи и другие), относящиеся к категории облучаемых лиц персонала группы Б.

 

Требования по обеспечению радиационной безопасности пациентов и населения

Направление пациента на медицинские рентгенологические процедуры осуществляет лечащий врач по обоснованным клиническим показаниям. Врачи, выполняющие медицинские рентгенологические исследования, должны знать ожидаемые уровни доз облучения пациентов, возможные реакции организма и риски отдаленных последствий.

По требованию пациента ему предоставляется полная информация об ожидаемой или о полученной им дозе облучения и о возможных последствиях. Право на принятие решения о применении рентгенологических процедур в целях диагностики предоставляется пациенту или его законному представителю.

Пациент имеет право отказаться от медицинских рентгенологических процедур, за исключением профилактических исследований, проводимых в целях выявления заболеваний, опасных в эпидемиологическом отношении.

Окончательное решение о целесообразности, объеме и виде исследования принимает врач-рентгенолог. При необоснованных направлениях на рентгенологическое исследование (отсутствие диагноза и др.) врач-рентгенолог может отказать пациенту в проведении рентгенологического исследования, предварительно проинформировав об этом лечащего врача и зафиксировав отказ в истории болезни (амбулаторной карте).

Врач-рентгенолог (или рентгенолаборант) регистрирует значение индивидуальной эффективной дозы пациента в листе учета дозовых нагрузок при проведении рентгенологических исследований (лист вклеивается в медицинскую карту амбулаторного больного) и в журнале учета ежедневных рентгенологических исследований. При выписке больного из стационара или после рентгенологического исследования в специализированных лечебно-профилактических учреждениях значение дозовой нагрузки вносится в выписку. Впоследствии доза переносится в лист учета дозовых нагрузок медицинской карты амбулаторного больного



Поделиться:


Последнее изменение этой страницы: 2016-09-05; просмотров: 576; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.131.168 (0.101 с.)