![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теория динамического программирования при создании бтс-мт, способы их построения. Классификация бтс-мт, особенности их реализации.Содержание книги
Поиск на нашем сайте
Суть теории динамического программирования заключается в том, что параметры объекта управления определяют не путем пассивного наблюдения, а методом активного вмешательства. Первое дозированное лечебное воздействие проводится стандартным препаратом (функциональная проба), а спустя определенное время от организма получают ответную информацию, которую автоматически сопоставляют с исходной. В зависимости от "ответа" организма в него вводится соответствующая доза того же или другого препарата, и так далее до достижения положительного лечебного эффекта. Классификация БТС-МТ довольно обширна. Выделяют следующие классификационные признаки:
- по структурному показателю различают: а) разомкнутые и замкнутые, б) непрерывного и дискретного управления, в) имплантируемые и экстракорпоральные системы; по назначению системы классифицируют в зависимости от объекта управления; по принципам управления разделяют системы, исходя: а)из природы сигналов, с помощью которых ведется управление (биоэлектрические, механические, химические, термоэлектрические и т.д.); б)из особенностей функционирования обратных связей (связи, реализующиеся в самих устройствах и реализуемые через изменения состояния физиологических систем организма); в)иерархичности управляющих сигналов; г) интегральных показателей функционирования системы; по степени сложности структуры выделяют простые детерминированные и сложные вероятностные системы. Регулятор управляется сигналами от предыдущего устройства естественной или искусственной природы (вход А), а ОУ сам воздействует на другой объект в этом же организме либо взаимодействует с внешними предметами или организмами (выход В). В первом случае система является закрытой, во втором - открытой. В структурных схемах используются как биологические регуляторы Рж, т.е. естественного происхождения (рис. а - в), так и регуляторы в виде технических устройств Рт (рис, г - е). Примером системы управления без БОС ( разомкнутая система) (а) может служить функциональный протез. Полуавтоматический режим работы системы (рис. б) предполагает непостоянное действие обратной связи, когда врач корректирует работу системы в зависимости от получаемой информации (например, система поддержания гомеостаза с участием врача). Автоматический режим, т.е. с постоянно действующей обратной связи. (рис. в), представлен в той же системе поддержания гомеостаза, но уже без включения в контур управления врача, или электромеханическим протезом конечности. Использование технических устройств в качестве регуляторов также может вестись в 'нескольких режимах. Например, система без обратной связи (рис. г) действует в дефибрилляторе в не синхронизированном режиме, полуавтоматический режим реализуется в имплантируемом или экстракорпоральном кардиостимуляторе, переходящем из режима биологической синхронизации в автоколебательный режим (рис. д), а примером автоматической системы может служить имплантируемый электрокардиостимулятор, управляющий работой сердца и синхронизируемый сердцем же по цепи обратной связи (рис. ё).
Выделяют основные особенности реализации БТС-МТ: 1. Регулирующее воздействие должно быть синхронизировано с естественными процессами и ритмами. 2. Необходимо обеспечить быстрый анализ поступающей на вход БТС информации и незамедлительную выработку требуемого терапевтического воздействия. Среди терапевтических систем особое место занимает широкий спектр физиотерапевтических систем, использующих низкоинтенсивное лазерное излучение, технические преимущества которого общеизвестны - это возможность локального равномерного облучения в широком диапазоне интенсивности светового потока, довольно высокая точность дозирования, использование волоконной оптики и специализированного световодного инструмента для подведения энергии лазерного излучения к патологическим очагам при их внутриполостной локализации Понятие “обратная связь”, преимущества введения в систему обратных связей, особенность биологической обратной связи. Биотехническая система для восстановления функции мышц с биологической обратной связью.
Обратная связь – это воздействие результатов функционирования какой-либо системы (объекта) на характер этого функционирования. Если влияние обратной связи усиливает результаты функционирования, то такая обратная связь называется положительной; если ослабляет – отрицательной. Обратная связь обеспечивает передачу информации о протекании процесса, на основе которой вырабатывается то или иное управляющее воздействие. Биологическая обратная связь в широком смысле представляет собой передачу человеку дополнительной, не предусмотренной природой информации о состоянии его органов и систем в доступной и наглядной форме. На основании этой информации человек способен включать механизмы саморегуляции и целенаправленно использовать огромные функциональные возможности организма. Накожный датчик регистрирует биоэлектрический сигнал, превращая его в амплитуду сокращения мышцы. Чем сильнее и продолжительнее ее сокращение, тем выше она отклоняется от нулевой отметки. Далее биоэлектрический сигнал передается на устройство БОС и преобразуется в световой (амплитуда светового столбца на экране) и звуковой (тональный) сигналы, т.е человек начинает видеть и слышать как сокращается его мышца. Цепочка БОС замыкается для реализации необходимы еще два условия: инструкция и мотивация для выполнения заданий инструктора, т.е необходимо дать четкую словесную инструкции; второе условие заключается в создании сильной побудительной причины к прав. выполнению данного упражнения для повышения эффективности тренировки. Функциональная блок-схема аппарата, реализующего представленный метод представлена на рис. Аппарат предназначен для повышения или восстановления функции мышц и может быть использован в мед. реабилитации пациентов с двигательными нарушениями различной этиологии. Он обеспечивает управление амплитудой сокращения одной мышцы по трем алгоритмам: непрерывному, пропорционально-дискретному и пороговому. Электрод накладывается на двигательную точку тренируемой мышцы пациента, а на его контактную поверхность электропроводная паста. При непрерывном режиме изменения амплитуды интегрированной ЭМГ, полученное в формирователе, приводит к плавному изменению тональности звукового сигнала обратной связи и соответствует перемещению светящейся метки по линейно-дискретной шкале блока зрительной обратной связи либо изменению звука. При пропорционально-дикскретном режиме изменение амплитуды мышечного сокращения, т.е амплитуды интегрированной ЭМГ сопровождается ступенчатым изменением тональности звукового сигнала и скачкообразным перемещением светового по линейно-дискретной шкале. При пороговом режиме (в) амплитуда мышечных сокращений поддерживается такой, что светящаяся метка не должна покидать заданного межпорогового промежутка, а звуковой сигнал появляется в моменты превышения установленных границ. Таким образом, аппарат биологической обратной связи по элек-тромиограмме отражает изменение амплитуды сокращения одной мышечной группы в световом и звуковом сигналах обратной связи. Применение метода БОС безболезненно для пациента; аппаратура БОС регистрирует сигналы организма (частоту дыхательных циклов, пульса, ритмы головного мозга, биоэлектрические сигналы, исходящие от мышц), не оказывая на человека непосредственного воздействия.
Применительно к БТС введение биологических обратных связейпозволяет проводить коррекцию оказываемого на пациента воздействия с учетом его состояния до и во время процедуры, осуществляя тем самым биологическое управление системой.
|
|||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 489; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.209.122 (0.007 с.) |