Закономерности изменчивости. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Закономерности изменчивости.



Каков механизм пострепликативной репарации ДНК. Какое значение оно имеет.

Пострепликативная репарация.

Допустим, в ДНК имеется первичное повреждение.

1 этап.Начинается процесс репликации ДНК. Фермент ДНК-полимераза синтезирует новую цепь полностью комплементарную старой неповрежденной цепи.

2 этап.Фермент ДНК полимераза синтезирует другую новую цепь, но участок, где находится повреждение, он обходит. В результате во второй новой цепи ДНК образовалась брешь.

3 этап.По окончании репликации фермент ДНК полимераза синтезирует недостающий участок комплементарно новой цепи ДНК.

4 этап. Затем фермент лигаза соединяют вновь синтезированный участок с цепью ДНК, где имелась брешь. Таким образом, первичное повреждение ДНК не перешло на другую новую цепь, то есть не произошла фиксация мутации.

В дальнейшем первичное повреждение ДНК может быть ликвидирован в ходе дорепликативной репарации.

Охарактеризовать мутации в зависимости от их влияния на жизнеспособность организма

I. По влиянию на жизнеспособность организма.

1. Летальные мутации в 100% случаев приводят к гибели организма из-за несовместимых с жизнью дефектов.

2. Полулетальные мутации приводят к гибели в 50-90% случаев. Обычно организмы с такими мутациями не доживают до репродуктивного периода.

3. Условно летальные мутации, в одних условиях организм погибает, а в других условиях выживает (галактоземия).

4. Полезные мутации повышают жизнеспособность организма и используются в селекции.

Каков механизм дорепликативной темновой репарации. Какое значение она имеет.

Дорепликативная репарация происходит до репликации ДНК, в этом процессе участвует много ферментов:

o Эндонуклеаза

o Экзонуклеаза

o ДНК- полимераза

o ДНК - лигаза

Допустим, в ДНК имеется первичное повреждение.

1 этап. Фермент эндонуклеаза находит поврежденный участок и разрезает его.

2 этап. Фермент экзонуклеаза удаляет поврежденный участок из ДНК (эксцизия) в результате образуется брешь.

3 этап. Фермент ДНК полимераза синтезирует недостающий участок. Синтез происходит по принципу комплементарности.

4 этап. Ферменты лигазы соединяют или сшивают вновь синтезированный участок с цепью ДНК. Таким образом, первичное повреждение в ДНК устраняется.

Представить механизмы перемещения мобильных генетических элементов.

Выделяют два варианта перемещения МГЭ по геному.

1. с помощью процесса обратной транскрипции. Для этого необходим фермент обратная транскриптаза (ревертаза). Этот вариант протекает в несколько этапов:

на ДНК фермент РНК-полимераза (другое название – транскриптаза) синтезирует иРНК,

на иРНК фермент обратная транскриптаза синтезирует одну цепь ДНК,

фермент ДНК-полимераза обеспечивает синтез второй цепочки ДНК,

синтезированный фрагмент замыкается в кольцо,

кольцо ДНК встраивается в другую хромосому или в другое место этой же хромосомы.

2. с помощью фермента транспозазы, который вырезает МГЭ и переносит его в другую хромосому или в другое место этой же хромосомы

Перечислить основные положения теории мутаций

Основные положения теории мутаций по Гюго де Фризу.

1. мутации возникают внезапно без всяких переходов.

2. возникшие формы вполне устойчивы.

3. мутации являются качественными изменениями.

4. мутации происходят в различных направлениях. они могут быть как полезными, так и вредными.

5. одни и те же мутации могут возникать повторно.

162. В чем сущность “миссенс” мутации. Привести пример

Миссенс мутации – замена 1 нуклеотида в триплете на другой приведет к тому, что в полипептидную цепь белка будет включаться другая аминокислота, которой в норме не должно быть, а это приведет к тому, что изменятся свойства и функции белка.

Пример: замена глутаминовой кислоты на валин в молекуле гемоглобина.

ЦТТ – глутаминовая кислота, ЦАТ – валин

Если такая мутация происходит в гене, который кодирует β цепь белка гемоглобина, то в β цепь вместо глютаминовой кислоты включается валин → в результате такой мутации изменяются свойства и функции белка гемоглобина и вместо нормального HbA появляется HbS, в результате у человека развивается серповидноклеточная анемия (форма эритроцитов изменяется).

163. Охарактеризовать реципрокные транслокации как структурные мутации хромосом.

Реципрокные транслокации происходят в тех случаях, когда две негомологичные хромосомы обмениваются своими участками.

Охарактеризовать мутации по особенности изменения фенотипа

Морфологические мутации, характеризующиеся изменением строения органа или организма в целом.

Физиологические мутации, характеризующиеся изменением функций органа или организма в целом.

Биохимические мутации, связанные с изменением макромолекулы

165.Написать возможные варианты образующихся гамет при нарушении расхождения половых хромосом у мужчины и женщины во время Мейоза I и II.

Гаплоидия – одинарный набор хромосом (n)

Полиплоидия – увеличение числа хромосом кратное гаплоидному набору (3n, 4n и т.д.)

Анэуплоидия – изменение числа отдельных хромосом (46 +1).Гаметы:n n;2n 0;23 23;22 24; 47, ХХУ; (46 + Х); ХХХУ; 49, ХХХХY; Х (ХХХ); 47 хр. (46 + Х); 47 хр. (46 + третья 21 хр.); 47 хр. (46 + третья 13 хр.) 166.Охарактеризовать кольцевые хромосомы как структурные мутации хромосом Кольцевые хромосомы. В норме в кариотипе человека кольцевых хромосом нет. Они могут появляться при действии на организм мутагенных факторов, особенно радиоактивного облучения. При этом в хромосоме происходит 2 разрыва, и образовавшийся участок замыкается в кольцо. Если кольцевая хромосома содержит центромеру, то образуется – центрическое кольцо. Если центромеры нет, то образуется – ацентрическое кольцо, оно разрушается ферментами и не наследуется. Выявляются кольцевые хромосомы при кариотипировании. В гомозиготном состоянии эти мутации летальны, а в гетерозиготном состоянии фенотипически проявляются, как делеции. Кольцевые хромосомы являются маркерами радиоактивного облучения. Чем больше доза радиоактивного облучения, тем больше кольцевых хромосом, и тем хуже прогноз.

Охарактеризовать делеции как структурные мутации хромосом. Примеры у человека.

Делеция (нехватка) – потеря участка хромосомы.

в хромосоме может произойти 1 разрыв, и она потеряет концевой участок, который будет разрушен ферментами (дефишенси)

в хромосоме может быть два разрыва с потерей центрального участка, который также будет разрушен ферментами (интерстициальная делеция).

В гомозиготном состоянии делеции всегда летальны, в гетерозиготном состоянии они проявляются множественными пороками развития.

У человека делеции чаще происходят в хромосомах с 1 по 18. Например, делеция короткого плеча пятой хромосомы в гетерозиготном состоянии проявляется фенотипически, как синдром "кошачьего крика". Ребёнок рождается с большим числом патологий, живет от 5 дней до месяца (очень редко до 10 лет), его плач напоминает резкое мяуканье кота.

В 21 или 22 хромосоме стволовых кроветворных клеток может произойти интерстициальная делеция. В гетерозиготном состоянии она проявляется фенотипически как злокачественная анемия. Выявление делеций:

- дифференциальное окрашивание хромосом

- по фигуре петли, которая образуется во время коньюгации гомологичных хромосом в профазу мейоза 1. Петля возникает на нормальной хромосоме.

Охарактеризовать дупликации как структурные мутации хромосом

Дупликация – удвоение какого-то участка хромосомы (этот участок может повторяться многократно). Дупликации могут быть прямыми и обратными.

Выявление дупликаций:

- дифференциальное окрашивание.

- фигура петли в профазу мейоза 1. Петля возникает на мутировавшей хромосоме. При данных мутациях увеличивается доза генов в генотипе, и в гомозиготном состоянии эти мутации летальны. В гетерозиготном состоянии они проявляются множественными пороками развития. Однако эти мутации могли играть определенную роль в ходе эволюции. Таким образом могли возникнуть семейства генов гемоглобина.



Поделиться:


Последнее изменение этой страницы: 2016-08-25; просмотров: 562; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.131.13.37 (0.012 с.)