Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Экранирование электромагнитных полейСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Для предотвращения утечки информации по радиоэлектронным техническим каналам утечки информации, вызванных ПЭМИН и радиозакладными устройствами, на опасных направлениях применяют электромагнитные экраны. Физические процессы при экранировании отличаются в зависимости от вида поля и частоты его изменения. Различают электрические экраны для экранирования электрического поля, магнитные для экранирования магнитного поля и электромагнитные – для экранирования электромагнитного поля. Способность экрана ослаблять энергию полей оценивается эффективностью экранирования (коэффициентом ослабления). Если напряженность поля до экрана равна Ео и Но, а за экраном — Еэ и Нэ, то Se = Ео / Еэ и Sн = Но / Нэ. На практике эффективность экранирования измеряется в децибелах (дБ) или неперах (Нп):
Se(н) = 20·1g [Eо(Hо) / Еэ(Нэ)] [дБ] или Se(н) = ln [Eо(Hо) / Еэ(Нэ)] [Нп].
Аналитические зависимости эффективности экранирования определены для идеализированных (гипотетических) моделей экранов в виде бесконечно плоской однородной токопроводящей поверхности, однородной сферической окопроводящей поверхности и однородной бесконечно протяженной цилиндрической токопроводящей поверхности. Для других вариантов эффективность экранирования определяется с погрешностью, зависящей от степени их подобия гипотетическим. 1. При экранировании электрического поля электроны экрана под действием внешнего электрического поля перераспределяются таким образом, что на поверхности экрана, обращенной к источнику поля, сосредоточиваются заряды, противоположные по знаку зарядам источника, а на внешней (другой) поверхности экрана концентрируются одинаковые с зарядами источника поля (рис.1).
Рис. 1. Экранирование электрического поля.
Положительные заряды создают вторичное электрическое поле, близкое по напряженности к первичному. С целью исключения вторичного поля, создаваемого зарядами на внешней поверхности экрана, экран заземляется и его заряды компенсируются зарядами земли. Экран приобретает потенциал, близкий потенциалу земли, а электрическое поле за экраном существенно уменьшается. Полностью устранить поле за экраном не удается из-за неполной компенсации зарядов на его внешней стороне вследствие ненулевых значений сопротивления в экране и цепях заземления, а также из-за распространения силовых линий вне границ экрана. Эффективность экранирования зависит от электропроводности экрана и сопротивления заземления. Чем выше проводимость экрана и цепей заземления, тем выше эффективность электрического экранирования. Толщина экрана и его магнитные свойства на эффективность экранирования практически не влияют. Для стекания зарядов с экрана, наводимых электрическим полем, необходимо обеспечить заземление экрана с малым (менее 4 Ом) сопротивлением. В качестве заземлителей чаще всего применяются стальные трубы длиною 2 – 3 м диаметром 35 – 50 мм и стальные полосы сечением 50 – 100 мм. Более удобными являются трубы, позволяющие достигнуть достаточно глубоких влажных слоев земли, обладающих достаточно высокой проводимостью и не подвергающихся высыханию или промерзанию. Заземлители следует соединять с шинами, проложенными до мест размещения радиоэлектронных средств, с помощью сварки. Сечение шин и магистралей заземления по условиям механической прочности и получения достаточной проводимости рекомендуется брать не менее 24 х 4 мм. Магистрали заземления вне здания прокладываются на глубине около 1,5 м, внутри здания – по стене или специальным каналам таким образом, чтобы их можно было внешне осматривать. Соединяют магистрали с заземлителем с помощью сварки. К экрану или заземляемому устройству магистраль подключают с помощью болтового соединения в одной точке. 2. Экранирование магнитного поля достигается в результате действия двух физических явлений: - «втягивания» (шунтирования) магнитных силовых линий поля в экран из ферромагнитных материалов (с μ>>1), обусловленного существенно меньшим магнитным сопротивлением материала экрана, чем окружающего воздуха; - возникновением под действием переменного экранируемого поля в токопроводящей среде экрана индукционных вихревых токов, создающих вторичное магнитное поле, силовые линии которого противоположны магнитным силовым первичного поля. Магнитное сопротивление пропорционально длине магнитных силовых линий и обратно пропорционально площади поперечного сечения рассматриваемого участка и величине магнитной проницаемости среды (материала), в которой распространяются магнитные силовые линии. При втягивании магнитных силовых линий в экран уменьшается их напряженность за экраном. В результате этого повышается коэффициент экранирования. При воздействии на экран переменного магнитного поля в материале экрана возникают также ЭДС, создающие в материале экрана вихревые токи в виде множества замкнутых колец. Кольцевые вихревые токи создают вторичные магнитные поля, которые вытесняют основное и препятствует его проникновению вглубь металла экрана. Экранирующий эффект вихревых токов тем выше, чем выше частота поля и больше сила вихревых токов. Коэффициент экранирования магнитной составляющей поля представляет собой сумму коэффициентов экранирования, обусловленного рассмотренными физическими явлениями. Но доля слагаемых зависит от частоты колебаний поля. При f = 0 экранирование обеспечивается только за счет шунтирования магнитного поля средой экрана. Но с повышением частоты поля все сильнее проявляется влияние на эффективность экранирования вторичного поля, обусловленного вихревыми токами в поверхности экрана. Чем выше частота, тем больше влияние на эффективность экранирования вихревых токов. В силу разного влияния рассмотренных физических явлений магнитного экранирования отличаются требования к экранам на низких и высоких частотах. На низких частотах (приблизительно до единиц кГц), когда преобладает влияние первого явления, эффективность экранирования зависит в основном от магнитной проницаемости материала экрана и его толщины. Чем больше значения этих характеристик, тем выше эффективность магнитного экранирования. Для экрана, например, в виде куба эффективность магнитного экрана можно оценить по формуле: SH≈ l – μd/D,
где d – толщина стенок экрана; D – размер стороны экрана кубической формы. Эффективность экранирования за счет вихревых токов зависит от их силы, на величину которой влияет электрическая проводимость экрана. В свою очередь это сопротивление прямо пропорционально электрическому сопротивлению материала экрана и обратно пропорционально его толщине. Однако по мере повышения частоты поля толщина материала экрана, в которой протекают вихревые токи уменьшаются из-за так называемого поверхностного или скин-эффекта. Сущность его обусловлена тем, что внешнее (первичное) магнитное поле ослабевает по мере углубления в материал экрана, так как ему противостоит возрастающее вторичное магнитное поле вихревых токов. Напряженность переменного магнитного поля уменьшается по мере проникновения его в металл экрана на глубину х от его поверхности по экспоненциальному закону:
Нх = Но·ехр (-х/σ),
где а – эквивалентная глубина проникновения, соответствующая ослаблению напряженности магнитного поля в 2,72 раза и вычисляемая по формуле:
σ = 503 √ρ/f·μ
где ρ – удельное электрическое сопротивление материала экрана в Ом·мм2/м; f – частота магнитного поля в Гц; μ – относительная магнитная проницаемость материала экрана. Уменьшение эквивалентной глубины проникновения при увеличении μ обусловлено тем, что ферромагнитные материалы «втягивают» силовые магнитные линии первичного поля, в результате чего повышаются концентрация магнитных силовых линий и, следовательно, напряженность магнитного поля внутри материала экрана. В результате этого повышаются уровни индуцируемых в нем зарядов, следствием чего является увеличение значений вихревых токов и напряженности вторичного магнитного поля. Таким образом, глубина проникновения тем меньше, чем выше частота поля, удельная магнитная проницаемость и электрическая проводимость металла экрана. На высоких частотах эффективность магнитного экранирования в дБ экраном толщиной d в мм можно определить, подставив в SH= 20 lg (Hx / Ho) выражение для Нх. В результате такой подстановки и преобразования легко получить, что Sh ≈ 0,0173 d √ μ·f/ρ
Однако это выражение может использоваться для приближенной оценки эффективности экранирования при условии, что значение d соизмеримо с σ. Если d >>σ, то из-за поверхностного эффекта увеличение d слабо влияет на эффективность экранирования, так как вторичное магнитное поле создают вихревые токи в поверхностном слое экрана. Следовательно, для обеспечения эффективного магнитного экранирования на высоких частотах следует для экранов использовать материалы с наибольшим отношением μ/ρ, учитывая при этом, что с повышением f сопротивление из-за поверхностного эффекта возрастает в экспоненциальной зависимости. На высоких частотах глубина проникновения может быть столь малой, а сопротивление столь велико, что применение материалов с высокой магнитной проницательностью, например пермаллоя, становится нецелесообразным. Для f > 10 МГц значительный экранирующий эффект обеспечивает медный экран толщиной всего 0,1 мм. Для экранирования магнитных полей высокочастотных контуров усилителей промежуточной частоты бытовых радио- и телевизионных приемников широко применяют алюминиевые экраны, которые незначительно уступают меди по удельному электрическому сопротивлению, но существенно их легче. Для высоких частот толщина экрана определяется в основном требованиями к прочности конструкции. Кроме того, на эффективность магнитных экранов влияет конструкция самого экрана. Она не должна содержать участков с отверстиями, прорезями, швов на пути магнитных силовых линий и вихревых токов, создающих им дополнительное сопротивление. Так как магнитное экранирование обеспечивается за счет токов, а не зарядов, магнитные экраны не нуждаются в заземлении. 3. Физические процессы при электромагнитном экранировании рассматриваются на модели, представленной на рис. 2. Электромагнитное экранирование обеспечивается за счет отражения части от экрана и поглощения части, проникшей в экран электромагнитного поля. Следовательно, эффективность экранирования Sэ = Sэ,отр + Sэ, погл, где Sэ,отр=ΣSэ,отр i – эффективность экранирования за счет отражения электромагнитной волны от поверхности экрана; Sэ, погл=ΣSэ, погл i – эффективность экранирования за счет поглощения электромагнитной волны в экране.
Рис. 2. Электромагнитное экранирование
Эффективность экранирования в дБ за счет отражения электромагнитного поля рассчитывается по формуле:
Величина эффективности экранирования в дБ за счет поглощения в экране толщиной d мм оценивается по формуле:
Последнее выражение совпадает с приблизительной формулой, определяющей эффективность магнитного экранирования за счет вторичного поля. Это подтверждает утверждение, что поглощение электромагнитного поля обусловлено, прежде всего, потерями энергии вихревых токов в материале экрана. Как следует из приведенных формул, и зависимости от частоты, показателей магнитных и электрических свойств материала экрана влияние отражения и поглощения на разных частотах существенно отличается. На низких частотах наибольший вклад в эффективность экранирования вносит отражение от экрана электромагнитной волны, на высоких – ее поглощение в экране. Доля этих составляющих в суммарной величине эффективности электромагнитного экранирования одинаковая для немагнитных (μ ≈ 1экранов на частотах в сотни кГц (для меди – 500 кГц), для магнитных (μ >> 1) на частотах в доли и единицы Гц например для пермаллоя – 200 Гц. Магнитные материалы обеспечивают лучшее экранирование электромагнитной волны за счёт поглощения, а немагнитные, но с малым значением удельного сопротивления за счет отражения. Кроме того, учитывая, что электромагнитная волна содержит электрическую и магнитную составляющие, то при электромагнитном экранировании проявляются явления характерные для электрического и магнитного экранирования. Следовательно, на низких частотах материал экрана должен быть толстым, иметь высокие значения магнитной проницаемости и электропроводности. На высоких частотах экран должен иметь малые значения электрического сопротивления требования к его толщине и магнитной проницаемости материала существенно снижаются. Для обеспечения экранирования электрической составляющей электромагнитный экран надо заземлять.
|
||||||||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 2550; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.176.112 (0.01 с.) |