Способы защиты от вредного воздействия электромагнитных полей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Способы защиты от вредного воздействия электромагнитных полей



Вопросы к зачету по охране труда.

1. Правила безопасности при эксплуатации лазеров.

2. Защита от воздействия электромагнитных полей.

3. Действие электрического тока на организм человека. Виды электротравм.

4. Основные факторы, влияющие на исход поражения электрическим током.

5. Классификация помещений по степени опасности поражения электрическим током.

6. Анализ опасности поражения электрическим током в различных электрических сетях.

7. Шаговое напряжение

8. Заземление.

9. Зануление.

10. Классификация электрооборудования по степени защиты обслуживающего персонала от поражения электрическим током.

11. Электрозащитные средства.

12. Анализ опасности поражения электрическим током при использовании автотрансформатора.

13. Защита от статического электричества.

14. Способы и средства пожаротушения.

15. Пожарные извещатели.

16. Правила проведения демеркуризации.

.

 

Опасность

Видимое, а также ближнее инфракрасное и ультрафиолетовое лазерное излучение представляет из себя существенную опасность для глаз, так как это излучение хорошо фокусируется хрусталиком на сетчатке глаза. В то же время бытовые лазерные приборы имеют малую ширину пучка (порядка 3-5 мм), что обеспечивает высокую поверхностную плотность энергии в поперечном сечении луча. Именно высокая плотность энергии и может вызвать ожоги и другие повреждения.

На значительном расстоянии лазерный луч также может представлять опасность, ввиду того, что расходимость сравнима с дифракционной расходимостью при заданной апертуре. Поэтому высокая плотность энергии сохраняется на значительном расстоянии.

Лабораторные лазерные установки могут иметь среднюю мощность, доходящую до десятков и сотен ватт. При работе с такими установками требуется строжайшее соблюдение техники безопасности и специальная подготовка персонала.

Лазеры, излучающие вне видимого диапазона, представляют особую опасность в связи с тем, что человеческий глаз неспособен определить местоположение луча. При попадании в глаз такой луч будет замечен лишь тогда, когда поражение глаза уже наступило. Однако лазеры с достаточно большой длиной волны излучения (1,5 мкм) не проходят через внешние оболочки глаза и при малой мощности опасности не представляют. В этом случае поражение глаз возможно только при мощности, достаточной для разрушения роговицы глаза. Также многие виды излучения свободно проходят препятствия из оптически непрозрачных материалов (излучение на частотах 1-50ТГц проходит через лавсановую пластинку, в то время как для оптического и ИК излучения она является непрозрачной).

Существует мнение, что лазеры терагерцового диапазона излучения способны разрушать спираль ДНК, что может приводить к мутациям клеток.

Способы защиты от вредного воздействия электромагнитных полей

Защита человека от опасного воздействия электромагнитного облучения осуществляется следующими способами: уменьшением излучения от источника; экранированием источника излучения и рабочего места; установлением санитарно-защитной зоны; поглощением или уменьшение образования зарядов статического электричества; устранением зарядов статического электричества; применением средств индивидуальной защиты.

Уменьшение мощности излучения от источника реализуется применением поглотителей электромагнитной энергии; блокированием излучения.

Поглощение электромагнитных излучений осуществляется поглотительным материалом путем превращения энергии электромагнитного поля в тепловую. В качестве такого материала применяют каучук, поролон, пенополистерол, ферромагнитный порошок со связывающим диэлектриком.

Экранирование источника излучения и рабочего места производится специальными экранами. При этом различают отражающие и поглощающие экраны. Первые изготавливают из материала с низким электросопротивлением — металлы и их сплавы (медь, латунь, алюминий, сталь, цинк). Они могут быть сплошные и сетчатые. Экраны должны быть заземлены для обеспечения стекания в землю образующихся на них зарядов.

Поглощающие экраны выполняют из радиопоглощающих материалов: эластичных или жестких пенопластов, резиновых ковриков, листов поролона или волокнистой древесины, обработанной специальным составом, а также из ферромагнитных пластин.

Для устранения зарядов статического электричества используют заземление частей оборудования, увлажнение воздуха.

Электромагнитное излучение

ЭМП – электромагнитные поля характеризуются следующими величинами: f, Гц; Е, В/м; Н, А/м; ППЭ – плотность потока энергии, Вт/м2.

Электрическое поле промышленной частоты.

Источники: ЛЭП, открытые распределительные устройства.

Допустимые значения:

До 5 кВ/м – 8 часов,

5 < E < 20 – 2 часа,

от 20 до 25 кВ/м – 10 минут,

более 25 – пребывание только в СИЗ.

Контроль фактических значений электрической напряжённости: после монтажа, при организации нового рабочего места, при изменении конструкции средств защиты, в порядке санитарного контроля. Высота замера: при отсутствии средств защиты на 1,8 м, при наличии 0,5 – 1,8.

Способы защиты:

1. Экранирование

Экраны: стационарные, переносные. Сетка – 500 мм, диаметр прута – 0,6мм и более. Экран должен быть заземлён.

2. СИЗ

Экранирующий комплект: куртка, каска, ботинки на электропроводящей резине, перчатки. Все элементы должны быть соединены и заземлены через ботинки на стационарное заземление.

Электромагнитное поле радиодиапазона.

Источники – телерадиоцентры, плазменные технологии, установки ТВЧ.

НЧ – 30-300 кГц, СЧ – 0-33 МГц, ВЧ – 3-30 МГц, УВЧ – 30-300МГц, СВЧ 0,3-300 ГГц

В зависимости от расстояния до источника ЭМП делят на зоны:

· Ближняя - не сформировалось и представляет собой совокупность электрических и магнитных полей (характеризуется величиной электрической и магнитной напряжённостей)

· Дальняя - ЭМП сформировалось и характеризуется величиной ППЭ

Воздействие ЭМП на человека зависит от частоты, мощности, времени воздействия, режима облучения (прерывистый, непрерывный), облучаемой поверхности, индивидуальной особенности. В зоне действия человек подвергается тепловому и биологическому воздействию.

Нормирование ЭМП. Нормируется по величине электрической и магнитной напряженности в зависимости от частоты для НЧ, СЧ, ВЧ, УВЧ по величине ППЭ для СВЧ диапазона.

Способы защиты.

Организационные мероприятия:

· выбор рациональных режимов работы оборудования;

· ограничение места и времени нахождения персонала в зоне действия поля.

Технические мероприятия:

· рациональное размещение оборудования;

· использование средств, ограничивающих величину ЭМП на рабочем месте;

· обозначение зон с повышенным уровнем ЭМП;

· снижение мощности;

· уменьшение времени работы;

· увеличение расстояния до источника;

· автоматизация работ;

· экранирование рабочего места или источника.

Экраны выполняют из стали, алюминия, меди или сетки с размером ячейки, равным / 3. Под воздействием ЭМП в материале экрана наводится вторичное поле, почти равное по амплитуде и противоположное по фазе внешнему. Экран должен быть заземлён;

· применение предупреждающей сигнализации;

· применение СИЗ;

· правильное размещение рабочего места;

· расположение источников в отдельных помещениях;

· требования к территории – размещение служб вне зоны действия ЭМП;

· определение пути движения людей в зоне ЭМП;

· лечебно-профилактические мероприятия;

· контроль величины ЭМП (на постоянных рабочих местах, на высоте 0,5 – 1-1,7 м).

Электрический ток

Опасность поражения людей электрическим током на производстве и в быту появляется при несоблюдении мер безопасности, а также при отказе или неисправности электрического оборудования и бытовых приборов. По сравнению с другими видами производственного травматизма электротравматизм составляет небольшой процент, однако по числу травм с тяжелым и особенно летальным исходом занимает одно из первых мест. На производстве из-за несоблюдения правил электробезопасности происходит 75% электропоражений.

Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм человека, электроток производит термическое, электролитическое, механическое, биологическое, световое воздействие.

Термическое воздействие тока характеризуется нагревом кожи и тканей до высокой температуры вплоть до ожогов.

Электролитическое воздействие заключается в разложении органической жидкости, в том числе крови, и нарушении ее физико-химического состава.

Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара из тканевой жидкости и крови. Механическое действие связано с сильным сокращением мышц вплоть до их разрыва.

Биологическое действие проявляется в раздражении и возбуждении живых тканей и сопровождается судорожными сокращениями мышц.

Световое действие приводит к поражению слизистых оболочек глаз.

Электрический удар

Электрический удар представляет собой возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся резкими судорожными сокращениями мышц, в том числе мышцы сердца, что может привести к остановке сердца.

Под местными электротравмами понимается повреждение кожи и мышечной ткани, а иногда связок и костей. К ним можно отнести электрические ожоги, электрические знаки, металлизацию кожи, механические повреждения.

Электрические ожоги

Электрические ожоги — наиболее распространенная электротравма, возникает в результате локального воздействия тока на ткани. Ожоги бывают двух видов — контактный и дуговой.

Контактный ожог является следствием преобразования электрической энергии в тепловую и возникает в основном в электроустановках напряжением до 1 000 В.

Электрический ожог – это как бы аварийная система, защита организма, так как обуглившиеся ткани в силу большей сопротивляемости, чем обычная кожа, не позволяют электричеству проникнуть вглубь, к жизненно важным системам и органам. Иначе говоря, благодаря ожогу ток заходит в тупик.

Когда организм и источник напряжения соприкасались неплотно, ожоги образуются на местах входа и выхода тока. Если ток проходит по телу несколько раз разными путями, возникают множественные ожоги.

Множественные ожоги чаще всего случаются при напряжении до 380 В из-за того, что такое напряжение “примагничивает” человека и требуется время на отсоединение. Высоковольтный ток такой “липучестью” не обладает. Наоборот, он отбрасывает человека, но и такого короткого контакта достаточно для серьезных глубоких ожогов. При напряжении свыше 1 000 В случаются электротравмы с обширными глубокими ожогами, поскольку в этом случае температура поднимается по всему пути следования тока.

При напряжении свыше 1 000 В в результате случайных коротких замыканий может возникнуть и дуговой ожог.

Металлизация кожи

Металлизация кожи — это выпадение мельчайших частичек расплавленного металла на открытые поверхности кожи. Обычно такое явление происходит при коротких замыканиях, производстве электросварочных работ. На пораженном участке возникает боль от ожога и наличия инородных тел.

Механические повреждения

Механические повреждения — следствие судорожных сокращений мышц под действием тока, проходящего через человека, приводящее к разрыву кожи, мышц, сухожилий. Это происходит при напряжении ниже 380 В, когда человек не теряет сознания и пытается самостоятельно освободиться от источника тока.

Ощутимый

Ощутимым называют электрический ток, который при прохождении через организм вызывает ощутимое раздражение. Минимальная величина, которую начинает ощущать человек при переменном токе с частотой 50 Гц, составляет 0,6–1,5 мА.

Неотпускающий

Неотпускающим считают ток, при котором непреодолимые судорожные сокращения мышц руки, ноги или других частей тела не позволяют пострадавшему самостоятельно оторваться от токоведущих частей (10,0–15,0 мА).

Фибрилляционный ток

Фибрилляционный — ток, вызывающий при прохождении через организм фибрилляцию сердца — быстрые хаотические и разновременные сокращения волокон сердечной мышцы, приводящие к его остановке (90,0–100,0 мА). Через несколько секунд происходит остановка дыхания. Чаще всего смертельные исходы наступают от напряжения 220 В и ниже. Именно низкое напряжение заставляет беспорядочно сокращаться сердечные волокна и приводит к моментальному сбою в работе желудочков сердца.

Безопасный ток

Допустимым следует считать ток, при котором человек может самостоятельно освободиться от электрической цепи. Его величина зависит от скорости прохождения тока через тело человека: при длительности действия более 10 с — 2 мА, а при 120 с и менее — 6 мА.

Безопасным напряжением считают 36 В (для светильников местного стационарного освещения, переносных светильников и т. д.) и 12 В (для переносных светильников при работе внутри металлических резервуаров, котлов). Но при определенных ситуациях и такие напряжения могут представлять опасность.

Безопасные уровни напряжения получают из осветительной сети, используя для этого понижающие трансформаторы. Распространить применение безопасного напряжения на все электрические устройства невозможно.

В производственных процессах используются два рода тока — постоянный и переменный. Они оказывают различное воздействие на организм при напряжениях до 500 В. Опасность поражения постоянным током меньше, чем переменным. Наибольшую опасность представляет ток частотой 50 Гц, которая является стандартной для отечественных электрических сетей.

Путь, по которому электрический ток проходит через тело человека, во многом определяет степень поражения организма. Возможны следующие варианты направлений движения тока по телу человека:

  • человек обеими руками дотрагивается до токоведущих проводов (частей оборудования), в этом случае возникает направление движения тока от одной руки к другой, т. е. “рука-рука”, эта петля встречается чаще всего;
  • при касании одной рукой к источнику путь тока замыкается через обе ноги на землю “рука-ноги”;
  • при пробое изоляции токоведущих частей оборудования на корпус под напряжением оказываются руки работающего, вместе с тем стекание тока с корпуса оборудования на землю приводит к тому, что и ноги оказываются под напряжением, но с другим потенциалом, так возникает путь тока “руки-ноги”;
  • при стекании тока на землю от неисправного оборудования земля поблизости получает изменяющийся потенциал напряжения, и человек, наступивший обеими ногами на такую землю, оказывается под разностью потенциалов, т. е. каждая из этих ног получает разный потенциал напряжения, в результате возникает шаговое напряжение и электрическая цепь “нога-нога”, которая случается реже всего и считается наименее опасной;
  • прикосновение головой к токоведущим частям может вызвать в зависимости от характера выполняемой работы путь тока на руки или на ноги — “голова-руки”, “голова-ноги”.

Все варианты различаются степенью опасности. Наиболее опасными являются варианты “голова-руки”, “голова-ноги”, “руки-ноги” (петля полная). Это объясняется тем, что в зону поражения попадают жизненно важные системы организма — головной мозг, сердце.

Продолжительность воздействия тока влияет на конечный исход поражения. Чем дольше воздействуeт электрический ток на организм, тем тяжелее последствия.

Условия внешней среды, окружающей человека в ходе производственной деятельности, могут повысить опасность поражения электрическим током. Увеличивают опасность поражения током повышенная температура и влажность, металлический или другой токопроводящий пол.

По степени опасности поражения человека током все помещения делятся на три класса: без повышенной опасности, с повышенной опасностью, особо опасные.

ПОРЯДОК И ГИГИЕНИЧЕСКИЕ ТРЕБОВАНИЯ К ПРОВЕДЕНИЮ ДЕМЕРКУРИЗАЦИИ

6.1. Ответственность за выполнение мероприятий по демеркуризации возлагается на руководителей предприятий и учреждений.

Примечания. 1. На предприятиях и учреждениях, где проводятся работы со ртутью, ее соединениями и приборами с ртутным заполнением, приказом директора назначаются лица, ответственные за организацию проведения демеркуризации, и лица, осуществляющие мероприятия.

2. Заключительная демеркуризация объектов непромышленного (коммунального) характера осуществляется строительно-ремонтными организациями территориального или отраслевого подчинения.

3. Демеркуризация объектов, являющихся историческими памятниками, охраняемыми государством, осуществляется в сроки и по плану, согласованному органами санэпидслужбы и отделами исполкомов Советов народных депутатов, ведающими вопросами охраны исторических памятников.

 

6.2. Проведение демеркуризационных мероприятий должно осуществляться строго по плану, разработанному предприятием и согласованному с органами и учреждениями санэпидслужбы. В плане должны быть предусмотрены:

- очередность работ и объем мероприятий по группам помещений или отдельным помещениям;

- прохождение медицинских осмотров лицами, привлеченными к проведению демеркуризации, обеспечение их индивидуальными защитными средствами, периодический контроль за состоянием их здоровья;

- порядок текущего контроля за состоянием воздушной среды помещений, подвергаемых демеркуризации, и условия приема их в эксплуатацию после окончания всех работ.

Примечание. Руководством предприятий и учреждений должны быть выделены лица для контроля за соблюдением правил техники безопасности, гигиенических и противопожарных требований при проведении демеркуризации.

 

6.3. При установлении очередности работ необходимо предусмотреть:

- возможность изоляции помещений, подвергаемых демеркуризации, от остальных помещений здания (изоляция может быть проведена по вертикальным или горизонтальным осям здания);

- первоочередное проведение работ в помещениях, строительные конструкции которых загрязнены более интенсивно;

- одновременное проведение идентичных этапов работ в сообщающихся друг с другом помещениях.

6.4. В целях предотвращения загрязнения помещений и территорий в процессе демеркуризации необходимо:

- освободить технологическое оборудование от остатков технологических продуктов и в зависимости от характера последующего использования помещений либо демонтировать его, либо укрыть, обеспечив гидро- и пыленепроницаемость укрытия;

- освободить помещение, где проводятся демеркуризационные работы от мебели и подвергнуть ее демеркуризации в соответствии с п. 5.11;

- увлажнять удаляемый со стен, потолка и пола материал (штукатурку, подпольную засыпку и т.п.);

- увлажнять строительный мусор и обеспечить своевременное (не позже 2 - 3 дней) освобождение от него помещений, где проводится демеркуризация;

- обеспечить складирование загрязненного ртутью строительного мусора на водонепроницаемой подстилке (толь, рубероид) и своевременный (не позже 2 - 3 дней) вывоз его в места, отведенные для захоронения твердых отходов, закрепленным для этого транспортом.

Примечание. Образующиеся в процессе демеркуризации содержащие ртуть отходы (выломки полов, стен, др. элементы зданий и сооружений, футеровка и детали технологического оборудования и т.п.) при содержании в них не менее 0,5% ртути классифицируются и подвергаются утилизации как отходы класса Г согласно ГОСТ 1639-78 "Лом и отходы цветных металлов и сплавов. Общие технические условия". При более низком содержании ртути в отходах, образующихся в процессе демеркуризации, они классифицируются по токсичности и опасности и подлежат захоронению согласно санитарным правилам "Порядок накопления, транспортировки, обезвреживания и захоронения токсичных промышленных отходов" от 29.12.84 N 3183-84:

- ежедневно в конце рабочего дня (смены) на площадке обработки транспортных средств полигона для захоронения твердых отходов проводить гидросмыв кузова транспортных средств, выделенных для вывоза загрязненного ртутью мусора (желательно использовать самосвалы с металлическим кузовом);

- провести химическую демеркуризацию транспортных средств после окончания всех работ;

- не допускать использование конструкций элементов зданий (балки, черный пол, рамы, подоконники) для других помещений без предварительного проведения исследований на присутствие в них элементов ртути;

- обеспечить временное хранение новых строительных материалов в условиях, исключающих их загрязнение ртутью в ходе демеркуризации.

 

Вопросы к зачету по охране труда.

1. Правила безопасности при эксплуатации лазеров.

2. Защита от воздействия электромагнитных полей.

3. Действие электрического тока на организм человека. Виды электротравм.

4. Основные факторы, влияющие на исход поражения электрическим током.

5. Классификация помещений по степени опасности поражения электрическим током.

6. Анализ опасности поражения электрическим током в различных электрических сетях.

7. Шаговое напряжение

8. Заземление.

9. Зануление.

10. Классификация электрооборудования по степени защиты обслуживающего персонала от поражения электрическим током.

11. Электрозащитные средства.

12. Анализ опасности поражения электрическим током при использовании автотрансформатора.

13. Защита от статического электричества.

14. Способы и средства пожаротушения.

15. Пожарные извещатели.

16. Правила проведения демеркуризации.

.

 

Опасность

Видимое, а также ближнее инфракрасное и ультрафиолетовое лазерное излучение представляет из себя существенную опасность для глаз, так как это излучение хорошо фокусируется хрусталиком на сетчатке глаза. В то же время бытовые лазерные приборы имеют малую ширину пучка (порядка 3-5 мм), что обеспечивает высокую поверхностную плотность энергии в поперечном сечении луча. Именно высокая плотность энергии и может вызвать ожоги и другие повреждения.

На значительном расстоянии лазерный луч также может представлять опасность, ввиду того, что расходимость сравнима с дифракционной расходимостью при заданной апертуре. Поэтому высокая плотность энергии сохраняется на значительном расстоянии.

Лабораторные лазерные установки могут иметь среднюю мощность, доходящую до десятков и сотен ватт. При работе с такими установками требуется строжайшее соблюдение техники безопасности и специальная подготовка персонала.

Лазеры, излучающие вне видимого диапазона, представляют особую опасность в связи с тем, что человеческий глаз неспособен определить местоположение луча. При попадании в глаз такой луч будет замечен лишь тогда, когда поражение глаза уже наступило. Однако лазеры с достаточно большой длиной волны излучения (1,5 мкм) не проходят через внешние оболочки глаза и при малой мощности опасности не представляют. В этом случае поражение глаз возможно только при мощности, достаточной для разрушения роговицы глаза. Также многие виды излучения свободно проходят препятствия из оптически непрозрачных материалов (излучение на частотах 1-50ТГц проходит через лавсановую пластинку, в то время как для оптического и ИК излучения она является непрозрачной).

Существует мнение, что лазеры терагерцового диапазона излучения способны разрушать спираль ДНК, что может приводить к мутациям клеток.

Способы защиты от вредного воздействия электромагнитных полей

Защита человека от опасного воздействия электромагнитного облучения осуществляется следующими способами: уменьшением излучения от источника; экранированием источника излучения и рабочего места; установлением санитарно-защитной зоны; поглощением или уменьшение образования зарядов статического электричества; устранением зарядов статического электричества; применением средств индивидуальной защиты.

Уменьшение мощности излучения от источника реализуется применением поглотителей электромагнитной энергии; блокированием излучения.

Поглощение электромагнитных излучений осуществляется поглотительным материалом путем превращения энергии электромагнитного поля в тепловую. В качестве такого материала применяют каучук, поролон, пенополистерол, ферромагнитный порошок со связывающим диэлектриком.

Экранирование источника излучения и рабочего места производится специальными экранами. При этом различают отражающие и поглощающие экраны. Первые изготавливают из материала с низким электросопротивлением — металлы и их сплавы (медь, латунь, алюминий, сталь, цинк). Они могут быть сплошные и сетчатые. Экраны должны быть заземлены для обеспечения стекания в землю образующихся на них зарядов.

Поглощающие экраны выполняют из радиопоглощающих материалов: эластичных или жестких пенопластов, резиновых ковриков, листов поролона или волокнистой древесины, обработанной специальным составом, а также из ферромагнитных пластин.

Для устранения зарядов статического электричества используют заземление частей оборудования, увлажнение воздуха.

Электромагнитное излучение

ЭМП – электромагнитные поля характеризуются следующими величинами: f, Гц; Е, В/м; Н, А/м; ППЭ – плотность потока энергии, Вт/м2.

Электрическое поле промышленной частоты.

Источники: ЛЭП, открытые распределительные устройства.

Допустимые значения:

До 5 кВ/м – 8 часов,

5 < E < 20 – 2 часа,

от 20 до 25 кВ/м – 10 минут,

более 25 – пребывание только в СИЗ.

Контроль фактических значений электрической напряжённости: после монтажа, при организации нового рабочего места, при изменении конструкции средств защиты, в порядке санитарного контроля. Высота замера: при отсутствии средств защиты на 1,8 м, при наличии 0,5 – 1,8.

Способы защиты:

1. Экранирование

Экраны: стационарные, переносные. Сетка – 500 мм, диаметр прута – 0,6мм и более. Экран должен быть заземлён.

2. СИЗ

Экранирующий комплект: куртка, каска, ботинки на электропроводящей резине, перчатки. Все элементы должны быть соединены и заземлены через ботинки на стационарное заземление.

Электромагнитное поле радиодиапазона.

Источники – телерадиоцентры, плазменные технологии, установки ТВЧ.

НЧ – 30-300 кГц, СЧ – 0-33 МГц, ВЧ – 3-30 МГц, УВЧ – 30-300МГц, СВЧ 0,3-300 ГГц

В зависимости от расстояния до источника ЭМП делят на зоны:

· Ближняя - не сформировалось и представляет собой совокупность электрических и магнитных полей (характеризуется величиной электрической и магнитной напряжённостей)

· Дальняя - ЭМП сформировалось и характеризуется величиной ППЭ

Воздействие ЭМП на человека зависит от частоты, мощности, времени воздействия, режима облучения (прерывистый, непрерывный), облучаемой поверхности, индивидуальной особенности. В зоне действия человек подвергается тепловому и биологическому воздействию.

Нормирование ЭМП. Нормируется по величине электрической и магнитной напряженности в зависимости от частоты для НЧ, СЧ, ВЧ, УВЧ по величине ППЭ для СВЧ диапазона.

Способы защиты.

Организационные мероприятия:

· выбор рациональных режимов работы оборудования;

· ограничение места и времени нахождения персонала в зоне действия поля.

Технические мероприятия:

· рациональное размещение оборудования;

· использование средств, ограничивающих величину ЭМП на рабочем месте;

· обозначение зон с повышенным уровнем ЭМП;

· снижение мощности;

· уменьшение времени работы;

· увеличение расстояния до источника;

· автоматизация работ;

· экранирование рабочего места или источника.

Экраны выполняют из стали, алюминия, меди или сетки с размером ячейки, равным / 3. Под воздействием ЭМП в материале экрана наводится вторичное поле, почти равное по амплитуде и противоположное по фазе внешнему. Экран должен быть заземлён;

· применение предупреждающей сигнализации;

· применение СИЗ;

· правильное размещение рабочего места;

· расположение источников в отдельных помещениях;

· требования к территории – размещение служб вне зоны действия ЭМП;

· определение пути движения людей в зоне ЭМП;

· лечебно-профилактические мероприятия;

· контроль величины ЭМП (на постоянных рабочих местах, на высоте 0,5 – 1-1,7 м).

Электрический ток

Опасность поражения людей электрическим током на производстве и в быту появляется при несоблюдении мер безопасности, а также при отказе или неисправности электрического оборудования и бытовых приборов. По сравнению с другими видами производственного травматизма электротравматизм составляет небольшой процент, однако по числу травм с тяжелым и особенно летальным исходом занимает одно из первых мест. На производстве из-за несоблюдения правил электробезопасности происходит 75% электропоражений.

Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм человека, электроток производит термическое, электролитическое, механическое, биологическое, световое воздействие.

Термическое воздействие тока характеризуется нагревом кожи и тканей до высокой температуры вплоть до ожогов.

Электролитическое воздействие заключается в разложении органической жидкости, в том числе крови, и нарушении ее физико-химического состава.

Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара из тканевой жидкости и крови. Механическое действие связано с сильным сокращением мышц вплоть до их разрыва.

Биологическое действие проявляется в раздражении и возбуждении живых тканей и сопровождается судорожными сокращениями мышц.

Световое действие приводит к поражению слизистых оболочек глаз.



Поделиться:


Последнее изменение этой страницы: 2016-06-23; просмотров: 527; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.198.173 (0.11 с.)