Установившиеся (равновесные) режимы полета. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Установившиеся (равновесные) режимы полета.



Что такое установившийся режим? Слово установившийся означает, что все параметры полета (скорость, снижение, курс) остаются постоянными. Это важное условие, так как и камень способен летать (недолго), но его полет не будет установившимся. (Рис. 9)

Установившийся горизонтальный полет.

Изобразим самолет в установившемся горизонтальном полете в скоростной системе координат. Скоростная система координат удобна для анализа режимов полета и расчета аэродинамических сил. Ось Х расположена по направлению вектора скорости набегающего потока. Ось Z направлена «на нас» в плоскости крыла (перпендикулярно Х). Ось Y направлена «вверх» перпендикулярно плоскости XZ.

На самолет действуют сила тяжести, подъемная сила, сила сопротивления и сила тяги двигателя. Согласно второму закону Ньютона, сумма всех этих сил равна нулю (в установившемся полете).

(4)

Запишем это уравнение в проекциях на скоростную систему координат:

ось OY: Y-G=0 = > Y=G (5)

ось ОХ: Х-Т=0 => Х=Т (6)

Из уравнений следует, что подъемная сила уравновешивает силу тяжести, а сила тяги двигателя уравновешивает силу сопротивления. Равновесие этих сил и обеспечивает установившийся горизонтальный полет.

Установившееся планирование.

С самолетом понятно, у него есть двигатель. А за счет какой силы летит планер или параплан? Все дело в том, что установившийся полет планера не горизонтален. Планер «скользит» по наклонной траектории, и вместо двигателя работает проекция силы тяжести. Здесь идеально подходит аналогия с шариком, который скатывается по наклонной плоскости (рис. 11). Шарик движется за счет неуравновешенной проекции силы тяжести.

Пусть планер летит по траектории, имеющей угол Y с горизонтом. Вектор скорости уже не перпендикулярен силе тяжести, и имеет с ней угол. Подъемная сила всегда перпендикулярна вектору скорости. В итоге получаем систему сил (рис. 12).

Режим установившийся, поэтому сумма всех сил равна нулю.

G+Y+X=0 (7)

В проекциях на скоростную систему координат:

oyY - Gcos() = 0 => Y = Gcos() (8)

oxX - Gsin() = 0 => X = Gsin() (9)

Так как угол Y обычно мал, то приближенно можно считать, что

cos() = l, а Y = G

Итак, безмоторный летательный аппарат летит с постоянным снижением. От чего зависит скорость снижения? Из рисунка 12 можно найти проекции скорости на вертикальную и горизонтальную оси земной системы координат.

Vгор = Vcos() = V (10)

Vсн = Vsin() (11)

Чем меньше угол Y, тем меньше скорость снижения. Как мы уже выяснили, угол Y образуется из-за необходимости компенсировать силу сопротивления. Соответственно, уменьшение силы сопротивления уменьшает скорость снижения.

В аэродинамике используется понятие аэродинамического качества, равного отношению коэффициентов подъемной силы и силы сопротивления.

К = Су/СX. (12)

Из формул (2 и 3) получаем:

Cy/Cx = Y/X (13)

Тогда

KCy/Cx = Y/X = tg() (14)

Аэродинамическое качество показывает, во сколько раз подъемная сила больше силы сопротивления. Так, при качестве 5 и весе пилота с парапланом в 100 кг, получаем:

У = 100 кг; Х = 20 кг.

С помощью аэродинамического качества, можно узнать какое расстояние пролетит пилот с имеющейся высоты (рис. 13). При качестве 5 пилот со 100 м пролетит 500 м.

 

Очевидно, что один из путей совершенствования летательных аппаратов - увеличение качества. У современных планеров качество превышает 50. А у спортивных парапланов оно приближается к 9. Установившийся набор высоты.

Самолеты не только планируют, летают горизонтально, но и набирают высоту (имеется ввиду набор высоты в спокойном воздухе за счет тяги двигателя). На параплане такой режим возможен при полете с парамотором и буксировке за лебедкой. В этом случае движение так же происходит по наклонной траектории, но «в горку».

Y+G+X+T = 0 (15)

В проекциях на оси:

oy Y-Gcos() = 0 ° => Y = Gcos() (8)

ох Х-Т sin() = 0 => T = X+Gsin() (9)

Сила тяги уравновешивает силу сопротивления и проекцию силы тяжести. Чем больше сила тяги, тем больший угол подъема она обеспечивает.

Скорость полета. Управление скоростью.

Диапазон скоростей полета.

Диапазон полетных скоростей параплана.

В предыдущих разделах мы считали, что летательный аппарат летит с какой-то определенной скоростью. От чего зависит скорость полета? В каких пределах меняется? Как ею управлять? С какой скоростью летать? В этой главе Вы получите ответы на все эти вопросы.

Скорость полета параплана.

Представьте себе, что вы взлетели. Успокоившись после суматохи старта, ваш параплан летит с постоянной скоростью (наступило равновесие сил). От чего зависит скорость полета? Вспомним уравнение установившегося планирования.

Y = G cos()

Подъемную силу можно определить по формуле:

Y = Cy

Объединяя уравнения, получаем формулу для определения скорости полета:

V2 =

Из формулы видно, что скорость постоянна, пока постоянны все остальные параметры уравнения (полетный вес G, коэффициент подъемной силы Су, площадь крыла S, плотность воздуха) При их изменении равновесие сил нарушается. Полет перестает быть установившимся. Происходит переходный режим полета, во время которого меняется скорость полета и восстанавливается равновесие сил. В результате параплан переходит к новому (!) установившемуся режиму полета.

Пример: Вернемся к полетам. Представьте, что во время полета вам захотелось пошутить. В голову приходит отличная (банальная) идея окатить своих наземных друзей водичкой. Реализуя этот веселый проект, вы сбрасываете с параплана некую резиновую емкость с водой. На земле кто-то радуется, что это был не камень, а у вас происходит переходный процесс. Полетный вес уменьшился, подъемная сила осталась прежней. Равновесие сил нарушено - параплан тянет вверх. Это конечно не плохо, но равновесие нарушено и в другой паре сил. Сила сопротивления теперь больше, чем проекция уменьшившейся силы тяжести, и тянет параплан назад. Происходит торможение. Скорость полета снижается. Из-за этого аэродинамические силы уменьшаются и возвращаются к состоянию равновесия. Вы продолжаете полет на меньшей скорости, любуясь последствиями бомбардировки.

Итак, у нас появилась возможность проанализировать за счет чего и в каких пределах можно менять скорость полета.

Влияние полетного веса и площади крыла.

Часто можно услышать шутки над тяжелыми пилотами по поводу их летучести. Между тем, тяжелые пилоты создают меньшее удельное сопротивление и летают даже лучше легких! Им просто нужен большой параплан.

Вес и площадь связаны через величину удельной нагрузки:

=G/S

Если удельные нагрузки парапланов равны, то их скорости одинаковы. Легкий пилот на маленьком параплане будет лететь так же, как тяжелый - на большом.

Изменение удельной нагрузки часто используется спортсменами. Для увеличения веса применяют балласт - воду, заливаемую в специальный мешок. При необходимости балласт сливают (иногда на соперника). Увеличение веса на 10% приводит к увеличению скорости на 5%.

Нагруженный параплан летит быстрее и лучше управляется. Из-за повышенного давления в крыле у него реже происходят складывания. К сожалению, увеличение скорости полета вызывает возрастание скорости снижения.

С недогруженным парапланом легче летать в слабых условиях (меньше снижение). Но такой параплан хуже управляется и чаще складывается. С ним сложнее взлетать в сильный ветер из-за высокой «парусности».

Правдивая история: Как-то Кряжев Николай решил всех победить, и к Чемпионату России 96 г. пошил огромный параплан. По замыслу конструктора, маленькое снижение обеспечивало победу. К великому огорчению Коли, его шедевр вечно сдувало ветром и складывало от «чиха Кощея на северном полюсе». В дополнение к несчастьям, Колю дисквалифицировали за полеты без шлема.

Влияние плотности воздуха.

Чтобы заметить это влияние, нужно подняться на значительную высоту. Первый раз увеличение скорости за счет уменьшения плотности я заметил во время маршрутного полета на Кавказе. На высоте 4800 м мои «крейсерские» 38 км/ч превратились в 45 км/ч. Это здорово помогло быстрому прохождению 60 км маршрута. Не лишним будет напоминание об увеличении скорости на взлете. Иногда в горах приходится использовать лыжи, потому что «люди так не бегают».

 

Влияние коэффициента подъемной силы.

Все предыдущие параметры сложно использовать для управления скоростью. Для этого подходит коэффициент Су, который сильно зависит от угла атаки и формы профиля (рис. 15). На самолете угол атаки регулируют рулем высоты, а форму профиля закрылками и элеронами.

У параплана угол атаки и форма профиля меняется одновременно с помощью строп управления (клевант). Если вы летите с отпущенными клевантами, то Су минимален, а скорость максимальна (35...38 км/ч). Затягивая клеванты на полный допустимый ход, вы увеличиваете Су и уменьшаете скорость полета (20...22 км/ч).

Управление скоростью.

Как вы уже поняли, параплан управляется стропами управления. Затягивая или отпуская клеванты, пилот уменьшает или увеличивает скорость полета. Осталось разобраться, что происходит при переходном процессе управления.

Итак, вы опять в полете и, затягивая стропы управления, увеличиваете угол атаки. У крыла увеличился Су. Подъемная сила возрастает и становится больше силы тяжести. Равновесие сил нарушается. Вас ждет приятный эффект - параплан снижается медленней, а иногда даже набирает высоту. К сожалению, подобная роскошь длится не долго. Сила сопротивления тоже увеличилась и сильнее тормозит параплан. Скорость полета уменьшается, аэродинамические силы уменьшаются, равновесие сил восстанавливается. Параплан перешел к новому (!) (меньше скорость, больше угол атаки) установившемуся режиму полета (рис.16)

«Горка» и «ямка».

Кратковременный набор высоты с помощью строп управления называют «горка». Им инстинктивно пользуются новички, пытающиеся любым способом покинуть грешную землю. Не забывайте, что при отпускании строп управления вас ждет обратный процесс «ямка». Происходит набор скорости за счет потери высоты. Действует закон сохранения энергии: кинетическая энергия скорости увеличивается за счет уменьшения потенциальной энергии высоты. Все как на велосипеде: едешь в горку - теряешь скорость, едешь с горки - набираешь скорость,



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 799; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.187.121 (0.016 с.)