Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Организация параллелизма с помощью монитора. Кольцевой буфер.Содержание книги
Поиск на нашем сайте
Мониторы
Монитор — механизм организации параллелизма, который содержит как данные, так и процедуры, необходимые для обеспечения доступа к неразделяемым ресурсам. В простейшем случае монитор состоит из мьютекса и набора процедур, взаимодействующих с общим ресурсом.
Монитор – это пассивный набор разделяемых переменных и повторно входимых процедур доступа к ним, которым процессы пользуются в режиме разделения, прич¨м в каждый момент времени им может пользоваться только один процесс. Монитор можно представить как комнату, от которой есть только один ключ. Если какой-то процесс намеревается воспользоваться этой комнатой и ключ находится снаружи, то этот процесс может отпереть комнату, войти в не¨ и воспользоваться одной из процедур монитора. Если ключа снаружи нет, то процессу придется ждать, пока тот, кто пользуется комнатой в данный момент, не выйдет из не¨ и не отдаст ключ. Кроме того, никому не разрешается в комнате оставаться навсегда.
Рассмотрим, например, некоторый ресурс, который выделяет соответствующий планировщик. Каждый раз, когда процесс желает получить этот ресурс, он должен обратиться к планировщику. Процедуру планировщик разделяют все процессы, и каждый из них может обратиться к планировщику в любой момент. Но планировщик не в состоянии обслуживать более одного процесса одновременно. Такая процедура планировщик представляет собой пример монитора.
Таким образом, монитор – это механизм организации параллелизма, который содержит как данные, так и процедуры, необходимые для динамического распределения конкретного общего ресурса или группы общих ресурсов. Процесс, желающий получить доступ к разделяемым переменным, должен обратиться к монитору, который либо предоставит доступ, либо откажет в н¨м. Вход в монитор находится под ж¨стким контролем – здесь осуществляется взаимоисключение процессов, так как в каждый момент времени только один процесс может пользоваться монитором. Процессам, которые хотят войти в монитор, когда он уже занят, приходится ждать, прич¨м режимом ожидания управляет сам монитор. При отказе в доступе монитор блокирует обратившийся к нему процесс и определяет условие, по которому процесс жд¨т. Проверка условия выполняется самим монитором, который и деблокирует ожидающий процесс.
Внутренние переменные монитора могут быть либо глобальными (используемыми всеми процедурами монитора), либо локальными (используемыми только в своих процедурах). Обращение к этим переменным возможно только изнутри монитора. При первом обращении к монитору инициализируются начальные значения переменных. При последующих обращениях используются те значения переменных, которые остались от предыдущего обращения.
Если процесс обращается к некоторой процедуре монитора и обнаруживается, что соответствующий ресурс уже занят, эта процедура монитора выда¨т команду WAIT с указанием условия ожидания. В этом случае, процесс, переводящийся в режим ожидания, будет ждать момента, когда необходимый ресурс освободится. Со временем процесс, который занимал данный ресурс, обратится к монитору, чтобы возвратить ресурс системе. В этом случае монитор выда¨т команду извещения (сигнализации) SIGNAL, чтобы один из ожидающих процессов мог получить данный ресурс и войти в монитор. Если монитор сигнализирует о возвращении ресурса, и в это время нет процессов, ожидающих такого ресурса, то он вносится в список свободных ресурсов.
Чтобы гарантировать, что процесс, находящийся в ожидании некоторого ресурса, со временем его получит, считается, что ожидающий процесс имеет более высокий приоритет, чем новый процесс, пытающийся войти в монитор.
Рассмотрим пример монитора для выделения одного ресурса.
Monitor resourse;
Condition free; (* условие - свободный*)
Var busy: Boolean;
Procedure Request; (* запрос*)
Begin
If busy then WAIT (free);
Busy:= true;
Выдать ресурс;
End;
Procedure Release; (* освобождение*)
Begin
Взять ресурс;
Busy:= false;
SIGNAL (free);
End;
Begin
Busy:= false;
End.
Единственный ресурс динамически запрашивается и освобождается процессами, которые обращаются к процедурам Request и Release. Если процесс обращается к процедуре Request в тот момент, когда ресурс используется, значение переменной busy будет true и Request выполнит операцию WAIT(free). Эта операция заблокирует обратившийся процесс, и он будет помещ¨н в конец очереди процессов, ожидающих доступа к монитору. Когда процесс, использующий ресурс, обратится к процедуре Release, операция монитора SIGNAL деблокирует процесс, находящийся в начале очереди, не позволяя исполняться никакой другой процедуре внутри того же монитора. Этот деблокированный процесс готов возобновить выполнение процедуры Request.
Использование монитора в качестве средства синхронизации и связи освобождает процессы от необходимости явно разделять между собою ресурсы, так как доступ к разделяемым переменным всегда ограничен телом монитора. Поскольку мониторы входят в состав ядра ОС, то разделяемые переменные становятся системными переменными. Этот факт автоматически исключает критические интервалы, так как в каждый момент монитором может пользоваться только один процесс.
Использование мониторов имеет ряд преимуществ по сравнению с низкоуровневыми средствами:
- локализация разделяемых переменных внутри тела монитора позволяет избавиться от малопонятных программных конструкций в синхронизируемых процессах;
- мониторы дают возможность процессам совместно использовать программные модули, представляющие критические секции (если несколько процессов совместно и одинаково используют некоторый разделяемый ресурс, то в составе монитора достаточно иметь одну копию соответствующей процедуры работы с этим ресурсом).
Кольцевой буфер Применение кольцевого буфера (ring buffer) - обычный прием, когда нужно организовать поток данных между асинхронными по отношению друг к другу процессами - например, между получением данных по каналу связи и обработкой этих данных в программе. Кольцевой буфер является упрощенным аналогом очереди (queue), которая применяется в многозадачных операционных системах (Windows, Linux, FreeRTOS и многих других) для организации безопасного (thread-safe) обмена данных между потоками (синхронизации).
Кольцевой буфер может использоваться не только на прием, но и на передачу - например, если нужно быстро подготовленные где-то данные постепенно передавать с течением времени. Кольцевой буфер удобен прежде всего тем, что очень просто производить заполнение буфера, проверку наличия данных в буфере и выборку данных из буфера, при этом не нужно особенно беспокоиться о выходе данных за границу буфера, переполнении памяти и т. п. Кольцевой буфер позволяет корректно обмениваться данными между обработчиком прерывания и основной программой.
Кольцевой буфер является разновидностью буфера FIFO, First Input First Output (первый зашел - первый вышел). Принцип кольцевого буфера довольно прост - в памяти выделяется непрерывный блок размером обычно равным степени двойки (назовем его buffer), и два индекса (idxIN и idxOUT) - один индекс указывает на место для записи в буфер (idxIN), другой - на место чтения из буфера. Размер буфера, равный степени двойки, выбирается для того, чтобы удобно было манипулировать индексами, указывающими на данные буфера, с помощью инкремента/декремента и наложения маски (это будет понятно далее). Индекс - это обычное число, равное адресу ячейки буфера. Например, на ячейку buffer[0] указывает индекс, равный нулю. Количество бит индекса как раз равно степени двойки размера буфера. Максимально удобны буфера размером 256 байт - в этом случае в качестве индекса можно применить 1 байт, и маску при операциях с указателями уже накладывать не надо. Код получается в этом случае максимально быстрый и компактный. На рисунке показан принцип работы кольцевого буфера на примере буфера в 16 байт (желтым показаны еще не обработанные данные буфера):
Вот так, например, выделяется буфер: #define BUF_SIZE 16 //размер буфера обязательно равен степени двойки! #define BUF_MASK (BUF_SIZE-1)
u8 idxIN, idxOUT; char buffer [BUF_SIZE];
При помещения значения value в буфер используется индекс idxIN. Это делается так: buffer[idxIN++] = value; idxIN &= BUF_MASK;
Значение константы BUF_MASK равно размеру буфера минус 1 (при условии, что размер буфера равен степени двойки). При таком принципе работы с индексом происходит автоматический переход на начало буфера, как только мы достигли его конца.
Операция выборки из буфера происходит похожим образом, только используется индекс idxOUT: value = buffer[idxOUT++]; idxOUT &= BUF_MASK;
Теперь становится понятным, почему при размере буфера 256 байт и байтовом индексе не нужна операция наложения маски - переход в ноль индекса при достижении конца буфера происходит автоматически.
Проверка на наличие данных в буфере происходит очень просто - если idxIN не равен idxOUT, то в буфере есть данные, в противном случае данных в буфере нет. Индекс idxOUT как-бы постоянно догоняет индекс idxIN при работе с данными буфера. Если догнал - значит, считывать из буфера больше нечего. if (idxIN!= idxOUT) { //данные есть, обрабатываем их ... }
Сбросить данные буфера (т. е. удалить их оттуда) тоже очень просто - для этого в idxOUT записывают значение idxIN: idxOUT = idxIN;
Иногда бывает необходимо знать, что не только данные в буфере есть, а еще нужно знать сколько именно байт данных в буфере. Для этого используется довольно простая процедура: u8 idxDiff (u8 idxIN, u8 idxOUT) { if (idxIN >= idxOUT) return (idxIN - idxOUT); else return ((BUF_SIZE - idxOUT) + idxIN);
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 356; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.84.37 (0.006 с.) |