Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Области применения терморазведкиСодержание книги
Поиск на нашем сайте
Аэрокосмические дистанционные радиотепловые и инфракрасные съёмки дают информацию для исследования природных ресурсов Земли и, в частности, для изучения районов активного вулканизма и гидротермальной деятельности, геологического картирования и поисков некоторых полезных ископаемых, инженерно-геологических и гидрогеологических съёмок, решения задач почвоведения и мелиорации, изучения снежного, ледяного покрова и динамики ландшафтов, охраны природной среды и др. Одной из интересных практически важных проблем, решаемых региональной термометрией и терморазведкой, является изучение геотермических ресурсов, то есть источников глубинной тепловой энергии недр Земли, используемых для выработки электроэнергии, теплофикации населенных пунктов, в курортологии, парниковых хозяйствах и т. п. Они связаны либо с высокотермальными подземными водами, либо с зонами перегретых пород по сравнению с окружающими массивами. Термические исследования геологической средымогут использоваться при выделении локальных тепловых аномалийинженерно-геологической, гидрогеологической, мерзлотно-гляциологической и геоэкологической природы. В различных природных условиях получаемые геотермические профили и карты служат для оконтуривания многолетнемерзлых и талых горных пород с разными тепловыми свойствами, изучения динамики подземных вод (приток глубинных вод создает положительные аномалии температур, поверхностных — отрицательные), прогноза приближения забоя выработок к обводненным зонам и решения других задач. Особый интерес представляет определение скорости фильтрации подземных вод. Для выявления мест фильтрации вод из водохранилищ, каналов, рек и стволов скважин, а также интервалов, где утечки отсутствуют, можно использовать измерения естественных и искусственных тепловых полей. Участки сосредоточенной фильтрации в берега акваторий выделяют по температурным аномалиям, знак которых зависит от температуры вод. Более четкие результаты получают при искусственном электрическом подогреве воды, например, в скважине. По скорости восстановления температур можно не только качественно выявить места утечек, но и оценить скорости фильтрации. В геоэкологических исследованиях шпуровую терморазведку можно использовать для изучения теплового загрязнения, выявления отходов промышленных и сельскохозяйственных предприятий в горных породах и поверхностных водах рек, озер, водохранилищ.
· Проектное задание раздела 2-Б. 1. Дать общую характеристику методов терморазведки. 2. Охарактеризовать тепловое поле Земли и его циклические изменения. 3. Объяснить что собой представляют региональные тепловые потоки в океанах, рифтах, на континентах. 4. Привести примеры локальных термических аномалий. 5. Назвать основные термические и оптические свойства горных пород. 6. Объяснить что представляет собой аппаратура для геотермических исследований. 7. Изложить технологию воздушной съемки Земли в инфракрасных и ультрафиолетовых лучах. 8. Объяснить для чего нужны измерения температур на дне акваторий и в горных выработках. 9. Раскрыть сущность региональных, поисково-разведочных и инженерно-гидрогеологических термических исследований. · Тесты рубежного контроля раздела 2-Б. 1. Вопрос: Какие существуют источники внутреннего тепла Земли? Ответ: Сезонные, многолетние и многовековые. Радиоактивный распад долгоживущих изотопов, процесс дифференциации вещества мантии. Термальные подземные воды. Тепловая энергия вещества мантии и ядра.
2. Вопрос: Какой основной параметр теплового поля Земли? Ответ: Температура. Тепловой поток. Геотермическая ступень. Теплоемкость горных пород. 3. Вопрос: Как выявляются тепловые потоки? Ответ: Путем бурения скважин. Радиотепловыми, инфракрасными и геотермическими съемками. Применением аппаратуры для геотермических исследований. Наблюдениями в горных выработках и карьерах. 4. Вопрос: Какими способами решаются прямые задачи геотермии? Ответ: Способами учета результатов наблюдений тепловых потоков. Методами физического и математического моделирования. Специальными измерениями теплофизических параметров на объектах с повышенным тепловым режимом. 5. Вопрос: Что представляют собой термические исследования геологической среды? Ответ: Специально разработанные технологии терморазведки. Измерения в скважинах и горных выработках температуры. Наблюдения за перемещением тепловых потоков в атмосфере и гидросфере. Составление карт распределения температуры в заданных участках земной коры.
· Критерии оценки по разделу 2-Б. Коллоквиум.
· Литература к разделу 2-Б. Основная: 1. Геофизика: учебник /Под ред. В.К. Хмелевского. - М.: КДУ, 2007. – С. 163-172. 2. Геофизические методы исследования. (Под редакцией В.К.Хмелевского). Учебное пособие. – М.: Недра, 1988. – С. 223-232. Дополнительная: 1. Богословский В.А., Жигалин А.Д., Хмелевской В.К. Экологическая геофизика: Учеб. Пособие. – М.: Изд-во МГУ, 2000. - С. 35-37. 2. Геоэкологическое обследование предприятий нефтяной промышленности / Под ред. Проф. В.А.Шевнина и доц. И.Н.Модина. – М.:РУССО,1999. - С. 309-375. 3. Вахромеев В.С. и др. Петрофизика: Учебник для вузов. – Томск: Из-во Том. Ун-та, 1997. - С. 179-185. 4. Мишон В.М. Основы геофизики: Учебник. – Воронеж: Тзд-во ВГУ, 1993. – С. 57-81.
Раздел 2-В- Геофизические исследования скважин
ТЕМА: Скважина как объект геофизических исследований. Краткая характеристика методов. Основы техники и технологии производства работ Геофизические методы исследования скважин (ГИС) – раздел разведочной (прикладной) геофизики, представляющий совокупность геофизических методов, предназначенных для изучения горных пород в разрезах геологоразведочных скважин и околоскважинном пространстве. К ГИС (ГИРС – геофизические исследования и работы в скважинах) также относят изучение технического состояния скважин и работы в скважинах (отбор проб из стенок скважин, перфорацию, торпедирование и др.). ГИС, согласно принятой терминологии, еще называют каротажем, а в нефтегазовых скважинах – промысловой геофизикой. Методы ГИС, служащие для изучения межскважинного пространства называются скважинной геофизикой. Методы ГИС основаны на использовании тех же физических полей, что и методы полевой геофизики, т.е. это поля гравитационное, магнитное, электроволновое (электромагнитное), сейсмоволновое (сейсмо-акустическое), тепловое, радиационное и др. По отношению к полевым (наземным) методам, специфика ГИС в изучении геологических разрезов геологоразведочных скважин, где скважина выступает в качестве геофизического профиля, преимущественно вертикального по отношению к дневной поверхности, реже круто- и пологонаклонного и еще реже горизонтального. В таких условиях технология геофизических работ приобретает самостоятельное значение. Необходимы знания о технологиях бурения скважин, их устройства и способов перемещения в них геофизических приборов (скважинных приборов). Следует учитывать, что скважины заполнены буровым раствором и с глубиной в них происходит рост давления и температуры. При спуске и подъеме приборов возникают их механические столкновения со стенкой скважин. Все это требует, чтобы приборы были помещены в герметизированные механически прочные корпуса и не могли бы подвергаться обрыву. С этих приборов измеряемые параметры должны передаваться и регистрироваться на поверхности. Следовательно, должны быть специальные геофизические (каротажные) кабели и спускоподъемные механизмы. Для регистрации параметров на дневной поверхности должны существовать измерительные приборы. Схема выполнения ГИС приведена на рис. 116. Для исследования скважин глубиной менее 1 км, каротажную лебедку и измерительную аппаратуру комплектуют на одном транспортном средстве. Мелкие (гидрогеологические, инженерно-геологические и геоэкологические) скважины исследуют с помощью переносной аппаратуры, включающую лебедку, блок-баланс, скважинные приборы и наземную регистрирующую аппаратуру. В скважине геофизические датчики поля, помещенные в скважинные приборы, как нигде (за исключением случаев наземных геофизических съемок на участках коренных невыветрелых пород) приближены к геологическим объектам, т.е. к пластам горных пород. И казалось бы регистрируемые параметры должны быть близкими к истинным. Однако это в большинстве случаев не так.
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 485; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.247.59 (0.006 с.) |