Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Понятие статистического закона распределения.Содержание книги
Поиск на нашем сайте
Предположим, что изучается дискретная или непрерывная случайная величина, закон распределения которой неизвестен. Для оценки закона распределения этой случайной величины и его числовых характеристик производится ряд независимых измерений x1, x2,..., xn.Статистический материал представляют в виде таблицы, состоящей из двух строк, в первой из которых даны номера измерений, а во второй — результаты измерений.
Такую таблицу называют простым статистическим рядом. Для того чтобы правильно оценить закон распределения СВ Х, производят группировку данных. Если X — дискретная СВ, то наблюденные значения располагаются в порядке возрастания и подсчитываются частоты mi или частости mi/n появления одинаковых значений СВ Х. В результате получаем сгруппированные статистические ряды:
Контроль: åmi = n.
Контроль: åmi/n = 1. Если изучается непрерывная случайная величина, то группировка заключается в разбиении интервала наблюденных значений случайной величины на k частичных интервалов равной длины [ x 0; x 1 [, [ x 1; x 2 [, [ x 2; x 3 [,...... [ x k-1; x k] и подсчете частоты или частости mi/n попадания наблюденных значений в частичные интервалы. Количество интервалов выбирается произвольно, обычно не меньше 5 и не больше 15. В результате составляется интервальный статистический ряд следующего вида:
Контроль: å mi/n = 1. Определение. Перечень наблюденных значений СВ Х (или интервалов наблюденных значений) и соответствующих им частостей mi/n называется статистическим законом распределения случайной величины. Статистические законы позволяют визуально произвести оценку закона распределения исследуемой случайной величины.
12. Графическое представление выборки (полигон, гистограмма). Их разновидности. Наиболее часто используют следующие виды графического представления характеристик выборки: полигон, гистограмма и кумулятивная кривая. Гистограмма и полигон позволяют выявить преобладающие значения признака и характер распределения частот и относительных частот. Рис. 2.2.3. Кумулятивная кривая накопленных частот
13. Как можно выдвинуть предположение (гипотезу) о виде распределения по наблюдениям за случайной величиной.величины на основе опытных данных" width="17" height="20" align="BOTTOM" border="0" />, оба параметра неизвестны.Пусть х1, х2, х3, …, хn – выборка, полученная в результате проведения n независимых наблюдений случайной величины Х. Чтобы подчеркнуть случайный характер величин х1, х2, х3, …, хn перепишем их в виде:Х1, Х2, Х3, …, Хn, где Хi – значение случайной величины Х в i-ом опыте.Требуется на основании этих опытных данных оценить математическое ожидание и дисперсию случайной величины. Такие оценки называются точечными, в качестве оценки m и D можно принять статистическое математическое ожидание и статистическую дисперсию , где До проведения опыта выборка Х1, Х2, Х3, …, Хn есть совокупность независимых случайных величин, которые имеют математическое ожидание и дисперсию, а значит распределение вероятности такие же как и сама случайная величина Х. Таким образом: , , где i = 1, 2, 3, …, n. Исходя из этого, найдем математическое ожидание и дисперсию случайной величины (пользуясь свойствами математического ожидания). Таким образом математическое ожидание статистического среднего равно точному значению математического ожидания m измеряемой величины, а дисперсия статистического среднего в n раз меньше дисперсии отдельных результатов измерений. при Это значит, что при большом объеме выборки N статистическое средние является величиной почти неслучайной, оно лишь незначительно отклоняется от точного значения случайной величины m. Этот закон называется законом больших чисел Чебышева.
|
||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 623; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.91.173 (0.008 с.) |