Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Методы получения тонких пленокСодержание книги
Поиск на нашем сайте
Существует множество методов получения тонких пленок: физическое осаждение или конденсация из газовой фазы на холодные подложки (термовакуумное напыление, катодное распыление); химическое осаждение из газовой фазы (пиролиз, реактивное распыление); электролитическое или гальваническое осаждение из растворов солей металлов (нанесение гальванических покрытий, химическое меднение); анодное или термическое окисление поверхности; трафаретная печать, шоолировдние, центрифугирование или окунание. Рассмотрим лишь те методы, которые играют главную роль в тонкопленочной технологии, а именно конденсацию из газовой фазы на холодные подложки методами термовакуумного испарения или катодного распыления. Термовакуумное напылеине. Термовакуумный метод получения тонких пленок основан на нагреве в вакууме вещества до его активного испарения и конденсации испаренных атомов на поверхности подложки. К достоинствам метода осаждения тонких пленок термическим испарением относятся высокая чистота осаждаемого материала (процесс проводится при высоком и сверхвысоком вакууме), универсальность (наносят пленки металлов, сплавов, полупроводников, диэлектриков) и относительная простота реализации. Ограничениями метода являются нерегулируемая скорость осаждения, низкая, непостоянная и нерегулируемая энергия осаждаемых частиц. Сущность метода термовакуумного напыления можно пояснить с помощью упрощенной схемы установки, представленной на рис. Вещество, подлежащее напылению, помещают в устройство нагрева (испаритель) 1, где оно при достаточно высокой температуре интенсивно испаряется. В вакууме, который создается внутри камеры специальными насосами, молекулы испаренного вещества свободно и быстро распространяются в окружающее пространство, достигая, в частности, поверхности подложки 2. Если температура подложки не превышает критического значения, происходит конденсация вещества на подложке, то есть рост пленки. На начальном этапе испарения во избежание загрязнения пленки за счет примесей, адсорбированных поверхностью испаряемого вещества, а также для вывода испарителя на рабочую температуру используется заслонка 4, временно перекрывающая поток вещества на подложку. В зависимости от функционального назначения пленки в процессе осаждения контролируется время напыления, толщина, электрическое сопротивления или какой-либо другой параметр. По достижении заданного значения параметра заслонка вновь перекрывает поток вещества и процесс роста пленки прекращается. Разогрев испаряемого вещества до температур, при которых оно интенсивно испаряется, осуществляют электронным или лазерным лучом, СВЧ-излучением, с помощью резистивных подогревателей (путем непосредственного пропускания электрич. тока через образец из нужного вещества или теплоперед. от нагретой спирали Если требуется получить пленку из многокомпонентного вещества, то используют несколько испарителей. Поскольку скорости испарения у различных компонентов разные, то обеспечить воспроизводимость химического состава получаемых многокомпонентных пленок довольно сложно. Поэтому метод термовакуумного напыления используют в основном для чистых металлов. Катодное распыление. Конструкция установки для катодного распыления, изображенной на рис., состоит из газоразрядной камеры 1, в которую вводится рабочий газ (обычно аргон) под давлением 1 - 10 Па; катода 2, выполняющего функцию распыляемой мишени; анода 3 и закрепленной на ней подложки 4. Между анодом и катодом подается постоянное напряжение величиной несколько киловольт, обеспечивающее создание в межэлектродном пространстве электрического поля напряженностью порядка 0,5 кВ/см. Анод заземлен, а отрицательное напряжение к катоду подается через изолятор 5. Чтобы исключить загрязнение стеклянного колпака камеры, вблизи катода закрепляют экран 6. Электрическое поле, существующее между катодом и анодом, ускоряет электроны, образующиеся в межэлектродном пространстве в результате фотоэмиссии из катода, автоэлектронной (полевой) эмиссии, воздействия космического излучения или других причин. Если энергия электронов превышает энергию ионизации молекул рабочего газа, то в результате столкновения электронов с молекулами газа возникает газовый разряд, то есть образуется газоразрядная плазма. Для того чтобы электрон мог набрать необходимую для ионизации газа энергию, ему требуется обеспечить минимально необходимую длину свободного пробега. Только при этом условии электрон, двигаясь без столкновений, способен увеличить свою энергию до нужной величины. Однако, если длина свободного пробега электронов становится сравнимой с расстоянием между катодом и анодом, то основная часть электронов будет пролетать межэлектродное пространство без столкновений с молекулами рабочего газа. Газоразрядная плазма погаснет. Эти два фактора и определяют нижний и верхний пределы давлений газа в камере. Образующаяся в результате газового разряда плазма состоит из электронов, ионов и нейтральных молекул рабочего газа. Ионы под воздействием электрического поля ускоряются и бомбардируют катод-мишень. Если энергия ионов превышает энергию связи атомов мишени, то происходит ее распыление. Кроме выбивания атомов с поверхности мишени, ионы способны выбить из нее вторичные электроны (вторичная электронная эмиссия). Эти вторичные электроны ускоряются и ионизируют молекулы рабочего газа; образующиеся при этом ионы бомбардируют мишень, вызывая вторичную электронную эмиссию, и процесс повторяется. Таким образом, газовый разряд поддерживает сам себя и поэтому называется самостоятельным тлеющим разрядом. С повышением тока, протекающего через газоразрядную плазму, увеличивается плотность ионного потока и интенсивность распыления мишени. При некоторой плотности потока, зависящей от условий охлаждения мишени, начинает проявляться термоэлектронная эмиссия. Ток в разряде возрастает, а сам разряд становится несамостоятельным, приобретая характер дугового разряда. Для предотвращения перехода самостоятельного тлеющего разряда в дуговой высоковольтный источник питания должен иметь ограничения по мощности, а мишень интенсивно охлаждаться. Для описания процессов катодного распыления мишени используют модели, основанные на двух механизмах. Согласно первому механизму распыленные атомы возникают в результате сильного локального разогрева поверхности мишени самим падающим ионом (модель "горячего пятна") или быстрой вторичной частицей (модель "теплового клина"). Второй механизм состоит в передаче импульса падающего иона атомам решетки материала мишени, которые, в свою очередь, могут передать импульс другим атомам решетки, вызвав тем самым каскад столкновений (модель столкновений). Основной характеристикой эффективности процесса распыления является коэффициент распыления Кр, определяемый отношением количества выбитых атомов Nат к количеству бомбардирующих мишень ионов Nион. По существу коэффициент распыления представляет собой среднее число атомов мишени, выбитых одним ионом. Коэффициент распыления зависит от энергии ионов Еи, его массы (рода рабочего газа), материала мишени и в некоторой степени от ее температуры и состояния поверхности, угла бомбардировки, давления газа (при условии, что давление не выходит за пределы, при которых газоразрядная плазма гаснет).
Характеристики подложек. Подложки служат диэлектрическим и механическим основанием для пленочных и навесных элементов и теплоотводом. Для обеспечения заданных электрических параметров микросхем материал подложки должен обладать: -высоким коэфф-ом теплопроводности для эффективной передачи тепла от тепловыделяющих элементов (резисторов, диодов, транзисторов) к корпусу; -высокой механической прочностью, обеспечивающей целостность подложки с нанесенными элементами как в процессе изготовления микросхемы (разделение на платы, термокомпрессия, пайка, установка платы в корпус и т. д.), так и при ее эксплуатации в условиях термоциклирования, термоударов и механических воздействий; -высокой хим. инертностью к осаждаемым материалам для снижения временной нестабильности параметров пленочных элементов, обусловленной физ.-хим. процессами на границе раздела пленка—подложка и проникновением ионов из подложки в пленку; -стойкостью к воздействию высокой температуры в процессах формирования элементов и установки навесных компонентов; -стойкостью к воздействию хим. реактивов в процессе подготовки поверхности подложки перед нанесением пленок, при электрохим. обработках и хим. осаждении пленок; -способностью к хорошей механической обработке (полировке, резке). Материалы подложки и нанесенных на нее пленок должны иметь незначительно различающиеся ТКЛР (температурн. коэф. линейн. расширения) для обеспечения достаточно малых механических напряжений в пленках, вызывающих их отслаивание и растрескивание при охлаждении подложки после нанесения пленочных элементов. Структура материала подложки и состояние ее поверхности оказывают существенное влияние на структуру пленок и хар-ки пленочных элементов. Большая шероховатость поверхности подложки снижает надежность тонкопленочных резисторов и конденсаторов, так как при наличии микронеровностей толщина резистивных и диэлектрических пленок становится неравномерной. При толщине пленок около 100 нм допускается высота микронеровностей примерно 25 нм. Толстые пленки имеют толщину 10...50 мкм, поэтому подложки для толстопленочных микросхем могут иметь микронеровности до 1...2 мкм. Если требуется обеспечить хороший теплоотвод, высокую механическую прочность и жесткость конструкции, то применяют металлические подложки: алюминиевые, покрытые слоем диэлектрика или эмалированные стальные. Габаритные размеры подложек стандартизованы (60X48 мкм). Обычно на стандартной подложке групповым методом изготавливают несколько гибридных микросхем. Деление подложки на части, кратные двум и трем, дает ряд типоразмеров плат, соответствующих размерам посадочных мест в стандартных корпусах для гибридных микросхем. Платой называется часть подложки с расположенными на ее поверхности пленочными элементами одной ГИС (гибридной микросхемы). Толщина подложек составляет 0,35...0,5 мм. Размеры подложек имеют только минусовые допуски в пределах (0,1...0,3 мм).
|
||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 1316; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.226.128 (0.009 с.) |