Зонная модель полупроводника. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Зонная модель полупроводника.



Зонная модель полупроводника.

К полупроводникам (ПП) относятся вещества, занимающие по величине удельной электрической проводимости промежуточное положение между металлами и диэлектриками. Их удельная электрич. проводимость лежит в пределах от 10-8 до 105 см/м и в отличие от металлов она возрастает с ростом темпер-ры.

ПП представляют собой достаточно многочисленную группу веществ. К ним относятся химич. элементы: германий (Ge), кремний (Si), бор, углерод, фосфор, сера, мышьяк, селен, серое олово, теллур, йод, некоторые химич. соед-ния и многие органич. вещества.

В электронике находят применение ограниченное кол-во полупроводниковых материалов. Это, прежде всего Si, Ge, и арсенид галлия.

Применяемые в электронике ПП имеют весьма совершенную кристаллическую структуру. Их атомы размещены в пространстве в строго периодической последовательности на постоянных расстояниях друг от друга, образуя кристалл-ую решетку. Решетка наиболее распространенных в электронике полупроводников – Ge и Si – имеет структуру алмазного типа. В такой реш. каждый атом вещества окружен четырьмя такими же атомами, находящимися в вершинах правильного тетраэдра.

Каждый атом, находящийся в кристаллической решетке, электрически нейтрален. Силы, удерживающие атомы в узлах решетки, имеют квантово-механический характер; они возникают за счет обмена взаимодействующих атомов валентными электронами. Подобная связь атомов носит название ковалентной связи, для ее создания необходима пара электронов.

В Ge и Si, являющихся 4 х -валентными элементами, на наружной оболочке имеется по четыре ковалентные связи с четырьмя ближайшими, окружающими его атомами.

рис. 1. рис. 2.

На рис. 1 показ. условн. изображ. кристалич. решетки Si на плоскости:

1 – атом кремния, 2 – ковалентная связь, образованная одним электроном.

На рис. 2 показ. образование свободного электрона под действием тепловой энергии:

1 – нарушенная ковалентн. связь, 2 – свободный электрон, 3 – незаполненная связь (дырка).

рис. 3.

EV – энергетич. уровень (max энергия связанного электрона), Ed – энергия донора, Ec – зона проводимости (min энергия свободного электрона), Eg – ширина запрещенной зоны.

EF – уровень Ферми, вероятность заполнения кот. равна ½.


P-n переход при прямом смещении.

Электронно-дырочным p-n наз. такой переход, кот. образован двумя областями ПП с разными типами проводимости: электронный и дырочный. Включение при кот. к p-n переходу прикладывается внешн. напряж. Uпр в противофазе с контактной разностью потенц. наз. прямым (см. рис. 1.). Как видно из потенциальной диаграммы (рис. 2) высота потенциального барьера уменьшается:

Uб=Uк-Uпр

Ширина p-n перехода также уменьшается h’<h. Дрейфовый ток уменьшается, диффузионный ток резко возрастает. Динамическое равновесие нарушается и ч/з p-n переход протекает прямой ток:

Iпр=Iдиф - Iдр ≈ Iдиф=Iобр ехр·(qeUпр / кТ).

Из формулы видно, при увелич. Uпр ток может возрасти до больших значений, т.к. он обусловлен движением основных носителей, концентрация которых в обеих областях ПП велика.

рис. 1.

ВАХ p-n перехода наз. зависимость тока, протекающего ч/з p-n переход, от величины и полярности приложенного U. Аналитич. выраж. ВАХ p-n перехода имеет вид:

I=Iобр [ ехр· (qeU / кТ) -1 ], где Iобр – обратный ток насыщения p-n перехода, U – напряж., приложенное к p-n переходу

Хар-ка, построенная с использованием этого выражения, имеет 2 характерных участка (рис. 2).

рис. 2.

1. участок соответствующий прямому управляющему напряжению; 2. участок соответствующий Uобр.

При больших Uобр наблюдается пробой p-n перехода, при кот. Iобр резко увеличивается. Различают два вида пробоя: электрический и тепловой.


Полупроводниковый диод.

Полупроводниковый диод (ПД) представляет собой 2 х -электродный прибор, действие кот. основано на использовании эл-ских свойств p-n перехода или контакта металл-полупроводник. К этим св-вам относятся: односторонняя проводимость, нелинейность ВАХ, наличие участка ВАХ, обладающего отрицательным сопротивлением, резкое возрастание обратного тока при эл-ком пробое, существование емкости p-n перехода. В завис. от того, какое из свойств p-n перехода используется, ПД могут быть применены для целей выпрямления, детектирования, преобразования, усиления и генерирования эл. колебаний, а также для стабилизации напряжения в цепях постоянного тока и в качестве переменных реактивных элементов.

В большинстве случаев ПД отличается от симметричного p-n перехода тем, что p- область диода имеет значительно большее количество примесей, чем n- область (несимметричный p-n переход), т.е. в этом случае n- область носит название базы диода. При подаче на такой переход обратного напряжения ток насыщения будет состоять почти только из потока дырок из базы в p- область и будет иметь меньшую величину, чем для симметричного перехода. При подаче прямого напряжения прямой ток тоже почти полностью будет состоять из потока дырок из p- области в базу, и уже при небольших прямых напряжениях будет возрастать экспоненциально. Уравнение ВАХ p-n перехода имеет вид:

.

Применение ПД для тех или иных целей определяет требования, предъявляемые к его хар-кам, к величинам преобразуемых мощностей, токов и напряжений. Эти требования могут быть удовлетворены с помощью соответствующего выбора материала, из кот. изготовляется диод, технологией изготовления p-n перехода и конструкцией диода.

В соответствии с этим ПД разделяются на ряд основных типовых групп. Существующая классификация подразделяет ПД следующим образом:

а) по назначению (выпрямительные, детекторные, преобразовательные, стабилитроны, варикапы и др.);

б) по частотным свойствам (низкочастотные, высокочастотные, СВЧ);

в) по типу перехода (плоскостные, точечные);

г) по исходному материалу (германиевые, кремниевые, арсенид-галлиевые и т.д.);

Кроме того, существует разделение ПД внутри одной группы в соответствии с электрическими параметрами.

Кроме специфических параметров, характеризующих данную типовую группу, существуют параметры общие для всех ПД независимо от их специального назначения. К ним относятся: рабочий интервал температур, допустимое обратное напряжение, допустимый выпрямленный ток, допустимая мощность рассеивания.


Выпрямительные диоды.

Выпр. диод (ВД) применяются для преобразования переменного I НЧ (до 50 кГц) в I одного направления (выпрямление переменного I). Обычно рабочие частоты ВД малой и средней мощности (P) не превышают 20 кГц, а диодов большой мощности – 50 Гц.

Возможность применения p-n перехода для целей выпрямления обусловлено его свойством проводить I в одном направлении (I насыщения очень мал).

В связи с применением ВД к их характеристикам и параметрам предъявляются следующие требования:

а) малый обратный ток I0;

б) большое обратное напряжение;

в) большой прямой ток;

г) малое падение напряжения при протекании прямого тока.

Для того чтобы обеспечить эти требования, ВД выполняются из полупроводниковых материалов с большой шириной запрещенной зоны (ЗЗ), что уменьшает обр. I, и большим удельным R, что увеличивает допустимое обр. U. Для получения в прямом направлении больших I и малых падений U следует увеличивать площадь p-n перехода и уменьшать толщину базы.

ВД изгот-ся из германия (Ge) и кремния (Si) с большим удельным R, причем Si является наиболее перспективным материалом.

Si диоды, в результате того, что Si имеет большую ширину ЗЗ, имеют во много раз меньшие обратные I, но большее прямое падение U, т.е. при равной P отдаваемой в нагрузку, потеря энергии у Si диодов будет больше. Si диоды имеют большие обратные U и большие плотности U в прямом направлении.

Зависимость ВАХ кремниевого диода от температуры (t) показана на рисунке.

Из рис. следует, что ход прямой ветви ВАХ при изменении (t) изменяется незначительно. Это объясняется тем, что концентрация основных носителей заряда при изменении температуры (t) практически почти не изменяется, т.к. примесные атомы ионизированы уже при комнатной t.

Количество неосновных носителей заряда определяется t и поэтому ход обратной ветви ВАХ сильно зависит от t, причем эта зависимость резко выражена для Ge диодов. Величина U пробоя тоже зависит от t. Эта зависимость определяется видом пробоя p-n перехода. При электрическом пробое за счет ударной ионизации возрастает при повышении t. Это объясняется тем, что при повышении t увелич-ся тепловые колебания решетки, уменьш-ся длина свободного пробега носителей заряда и для того, чтобы носитель заряда приобрел энергию достаточную для ионизации валентных связей, надо повысить напряженность поля, т.е. увеличить приложенное к p-n переходу обратное U. При тепловом пробое Uпроб при повышении t уменьшается.

В некотором интервале t для Ge диодов пробой чаще всего бывает тепловым (ширина ЗЗ Ge невелика), а для Si диодов – электрическим. Это определяет значения при заданной t. При комнатной t значения для Ge диодов обычно не превышают 400В, а для Si – 1500В.


Стабилитрон.

рис.1. рис. 2.

Обратная ветвь ВАХ, показанной на рис. 1, т.е. явление пробоя p-n перехода, можно использовать для целей стабилизации U, пользуясь тем обстоятельством, что до тех пор пока пробой носит электрический характер характеристика пробоя полностью обратима. Полупроводник. диоды, служащие для стабилизации U, называются стабилитронами (С).

Как видно из ВАХ, в области пробоя незначительные изменения обратного U приводят к резким изменениям величины обратного I.

Предположим, что диод, имеющий такую характеристику, включен в простейшую схему, показанную на рис. 2, причем рабочая точка находится в той области ВАХ, где при изменении тока U практически остается постоянным.

В этом случае, если изменяется входное напряжение U, то изменяется I в цепи, но т.к. U на диоде при изменении I остается постоянным (изменяется R диода), то и U в точках а, б – постоянно. Если параллельно к диоду к точкам а, б подключить R нагрузки, то U на нагрузке тоже не изменится.

С изготовляются из кремния (Si). Это связано с тем, что в C может быть использована только электрическая форма пробоя, которая явл. обратимой. Если пробой перейдет в необратимую тепловую форму, то прибор выйдет из строя. Поэтому величина Iобр в C ограничена допустимой мощностью рассеивания Pрас = Uобр·Iобр.

Т.к. ширина запрещенной зоны Si больше, чем у германия, то для него электрическая форма пробоя перейдет в тепловую при больших значениях обратного I – отсюда целесообразность выполнения C из Si. Степень легирования Si, т.е. величина его удельного сопротивления ρ, зависит от величины стабилизируемого U, на которое изготовляется диод. С для стабилизации низких U изгот-ся из Si с малым удельным R; чем выше стабилизируемое R, тем из более высокоомного материала выполняется диод. Изменение стабилизируемого U от нескольких вольт до десятков вольт может быть достигнуто изменением удельного R Si.

Основным параметром C явл. U стабилизации Uстаб и температурный коэффициент U ТКН, характеризующий изменение U на C при изменении температуры (t) на 1˚С, при постоянном токе.

ТКН может принимать, как положит., так и отриц. значения в зависимости от влияния t на U пробоя Uпроб. Для низковольтных С, кот. выполняются из низкоомных полупроводников, пробой имеет туннельный характер, а т.к. вероятность туннельного перехода электронов возрастает с увеличением t, т.е. Uпроб падает, то низковольтные C имеют отриц. ТКН.

Для высокоомных стабилитронов ТКН положителен.

где U – напряж. на диоде, T – температура.


Варикап.

Действие варикапов (В) основано на использовании емкостных свойств р-п перехода.

Обычно используется зависимость величины барьерной емкости Сзар от U в области обратных напряжений. В общем виде зависимость величины зарядной емкости от U имеет вид;

Сзар≈А(φк-U),

где А – постоянная,

φк – высота потенциального барьера,

U – внешнее напряжение,

υ = 1/2 – для резких переходов,

υ = 1/3 – для плавных переходов.

рис. 1.

Эта зависимость изображена на рис. 1, где сплошной линией показана характеристика плавного перехода, а пунктирной – резкого перехода.

(В) могут быть использованы для различных целей как конденсаторы с переменной емкостью. Иногда их используют в параметрических усилителях. В принципе работы параметрического усилителя лежит частичная компенсация потерь в колебательном контуре, состоящем из катушки индуктивности L и конденсатора C, при периодическом изменении емкости конденсатора или индуктивности катушки (при условии, что изменение будет происходить в определенных количественных и фазовых соотношениях с частотой колебаний контура). В этом случае увеличение мощности электрических колебаний (сигнала) происходит за счет энергии того источника, который будет периодически изменять величину реактивного параметра. В качестве такого переменного реактивного параметра и используется В, емкость которого меняется в результате воздействия гармонического U подаваемого от специального генератора накачки. Если с помощью U и генератора накачки полностью скомпенсировать все потери контура, т.е. довести его до состояния самовозбуждения, то такая система носит название параметрического генератора.

Очевидно, что в качестве управляемой емкости может работать любой полупроводниковый диод, при условии, что величина его зарядной емкости достаточно велика. К специальным параметрическим диодам, работающим в параметрических усилителях на высоких и сверхвысоких частотах, предъявляются повышенные требования: они должны обладать сильной зависимостью емкости от U и малым значением сопротивлением базы для повышения максимальной рабочей частоты.


Высокочастотные диоды.

В высокочастотных полупроводниковых диодах так же, как и в выпрямительных диодах, используется несимметричная проводимость p-n перехода.

Они работают на более высоких частотах, чем выпрямительные диоды (до сотен МГц), и подразделяются на универсальные и импульсные. Универсальные ВЧ диоды применяются для получения высокочастотных колебаний тока одного направления, для получения из модулированных по амплитуде высокочастотных колебаний – колебаний с частотой модуляции (детектирование), для преобразования частоты. Импульсные диоды применяются как переключающий элемент в импульсных схемах.

При работе полупроводникового диода на высокой частоте большую роль играет емкость перехода, обусловливающая инерционность диода. Если диод включен в выпрямительную схему, то влияние емкости приводит к ухудшению процесса выпрямления

Кроме того, эффективность выпрямления снижается за счет того, что часть подведенного к p-n переходу внешнего напряжения падает на сопротивлении базы диода. Отсюда следует, что p-n переходы полупроводниковых диодов, работающих на высокой частоте должны обладать малой емкостью и малым сопротивлением базы.

Для уменьшения емкости уменьшают площадь перехода, а для уменьшения сопротивления базы уменьшают толщину базы.

Требования уменьшения инерционных свойств в.ч. диода и, в связи с этим уменьшения площади перехода, времени жизни неравновесных неосновных носителей заряда и толщины базы становится особенно важным в том случае, если диод работает в импульсной схеме в качестве переключателя. Переключатель имеет два состояния: открытое и закрытое. В идеальном случае переключатель должен иметь нулевое сопротивление в открытом состоянии, бесконечно большое – в закрытом, и мгновенно переходить из одного состояния в другое. В реальном случае при переключении ВЧ диода из закрытого состояния в открытое и обратно стационарное состояние устанавливается в течение некоторого времени, которое называется временем переключения и характеризует инерционные свойства диода. Наличие инерционных свойств при быстром переключении приводит к искажению формы переключаемых импульсов.

При изготовлении импульсных диодов в исходный полупроводник вводятся элементы, являющиеся эффективными центрами рекомбинации (Au, Cu, Ni), что снижает время жизни неравновесных носителей заряда. Толщина n- области (базы) уменьшается до значений меньших, чем значение диффузионной длины пробега дырок . Это одновременно уменьшает и время жизни неравновесных носителей, и сопротивление базы. Конструктивно в.ч. диоды выполняются в виде точечной конструкции или плоскостной с очень малой площадью перехода.


Биполярный транзистор.

Бип. тр-ром (БТ) наз-ся электропреобразовательный полупроводниковый (ПП) прибор, имеющий два взаимодействующих перехода. Тр-р представляет собой кристалл ПП, содержащий 3 области с поочередно меняющимися типами проводимости. В зависимости от порядка чередования областей различ. БТ типов p-n-p и n-p-n. Принцип действия БТ различных тип. одинаков. Тр-ры получили назв. бипол., т.к. их работа обеспеч-ся носителями зарядов двух типов основными и неосновн.

Схематическое устр-во и условн. графич. обознач. p-n-p и n-p-n тр-ров показ. на рис. 1.

рис. 1.

Одну из крайних областей тр-ной структуры создают с повыш. концентрацией примесей, используют в режиме инжекции и наз. эмиттером. Среднюю область наз. базой, а крайнюю обл. – коллектором. Два перехода БТ наз. эмиттерным и коллекторным.

В завис. от того, какой электрод имеет общую точку соедин-я со вх. и вых. цепями, различ. 3 способа включ. тр-ра: с ОБ, ОЭ и ОК. Электрич. парам-ры и хар-ки БТ существенно различ-ся при разных схемах вкл.

По режимам работы p-n перехода различают 4 режима работы тр-ра:

1. Активный режим – эмиттерный переход открыт, коллекторный закрыт. Этот режим работы явл. обычным усилительным, при котором искажения сигнала min.

2. Режим насыщения – оба перехода откр. Падение U на откр. эмит. и колл. переходах напр. встречно, однако I в цепи Э-К проходит в одном напр., напр. от К к Э в тр-ре n-p-n типа (рис. 2.а). Тр-р работает в реж. насыщ. при относит. больших токах базы. Инжекции электронов в Б при этом становится столь сильной, что цепь К становится неспособной извлекать избыточные электроны из Б также эффективно, как в активном режиме. Концентрация электронов в Б у колл. перехода становится сравнимой с концентр. их у эмитт. перехода (рис. 2.b), что соотв-ет прямой полярности U на колл. переходе.

 

рис. 2.

3. Режим отсечки оба перехода закрыты. Он характ-ся очень малыми I ч/з запертые переходы тр-ра.

4. В инверсном реж. эмитт. переход закр., а колл. откр., т.е. Т вкл. «наоборот»: К работает в качестве Э, Э в качестве К.

Параметры БТ.

В справочниках приводятся основные и предельные параметры тр-ра.

К основным пар. относятся:

1. Емкость колл. перехода Ск;

2. Коэфф. усиления (передачи) по току h21Э;

3. Обратный I колл. перехода при включенном эмитт. Iкб 0;

4. Предельная частота fa;

5. Сопротивление базы Rб.


Тиристоры.

Тиристорами (Т) назыв. большое семейство полупроводн. приборов, кот. обладают бистабильными характ-ками и способны переключаться из одного сост. в другое. В одном сост. Т имеет высокое R и малый I (закр., или выключ. состояние), в другом – низкое R и большой I (откр., или вкл. сост.). Принцип действия Т тесно связан с принципом действия бип. транз-ра, в кот. и электроны, и дырки участвуют в механизме проводимости. Название «тиристор» произошло от слова «тиратрон», поскольку электрические хар-ки обоих приборов во многом аналогичны.

Благодаря наличию двух устойчивых состояний и низкой мощности рассеяния в этих состояниях Т обладают уникальными полезными св-вами, позволяющими использовать их для решения широкого диапазона задач (от регулирования мощности в домашних бытовых электроприборах до переключения и преобразования энергии в высоковольтных линиях электропередачи). В настоящее время созданы Т, работающие при I от нескольких mA до 5000А и выше и при напряжениях, превышающих 10000В.

Параметры тиристора:

Напряж. включения Uвкл – это прямое анодное U, при котором Т переходит из закр. в откр. состояние при разомкнутом управляющем выводе.

Ток включ. Iвкл – это такое значение прямого анодного I ч/з Т, выше которого Т переключ-ся в откр. сост. при разомкнутой цепи управляющего вывода.

Отпирающий ток управления Iу.вкл – наименьший I в цепи управляющего вывода, кот. обеспечивает переключение Т в откр. сост. при данном U на Т.

Время задержки tз – время, в течение кот. анодный I через Т возрастает до величины 0,1 установившегося значения с момента подачи на тир-р управляющего импульса.

Время включения tвкл – время, в течение кот. I ч/з Т возрастает до 0,9 установившегося значения с момента подачи на Т управляющего импульса.

Остаточное напряжение Uпр – значение напряж. на Т, находящемся в откр. сост., при прохожд. ч/з него максимально допустимого I. Uпр обычно не превышает .

Ток выключения Iвыкл – значение прямого I ч/з Т при разомкнутой цепи управления, ниже кот. тир-р выключается.

Время выключения tвыкл – время от момента перемены I, проходящего ч/з Т, с прямого на обратный до момента, когда Т полностью восстановит запирающую способность в прямом направлении.

Т широко прим. в радиолокации, уст-вах радиосвязи, автоматике, как приборы с отрицательной проводимостью, управляемые ключи, пороговые элементы, триггеры, не потребляющие I в исходном состоянии.


Однопереходный транзистор.

Однопереходный тр-р представляет собой полупроводниковый прибор с одним р-п переходом, в котором модуляция сопротивления полупроводника вызвана инжекцией носителей р-п переходом.

ОТ изготавливают из пластины высокоомного полупроводника с электропроводностью п -типа, он имеет 2 невыпрямляющих контакта к п -области и р-п переход, расположенный между ними.

рис. 1. Схема включения однопереходного тр-ра.

Согласно схеме структуры ОТ принимается следующая терминология: электрод от выпрямляющего контакта – эмиттер, электрод от нижнего невыпрямляющего контакта - первая база (Б1) и электрод от верхнего невыпр. контакта - вторая база (Б2). В некоторых случаях ОТ наз. базовым диодом.

На рис. 2 приведем ВАХ ОТ.

рис. 2. Входная ВАХ однопереходного тр-ра (1 – характеристика при отключенной базе).

При откл. Б2 хар-ка выглядит аналогично хар-ке обычного диода.

В триодном включении при большом U между невыпрямляющими контактами Б1 и Б2 переход заперт как при отриц. так и при положит. напряж. Uэ, не превышающих величины внутреннего напряжения UэБ1. Этому режиму соотв. участок хар-ки А-Б на рис. 2, аналогичный хар-ке обрат. вкл. р-п перехода.

При напряж на вх. Uэ=UэБ1 переход отпирается. Падающий участок ВАХ соответств. резкому падению напряж. на вх. Uэ при возрастающем токе Iэ (участок Б-В на рис. 2). Напряжение в точке максимума определяется из выражения Umax (Eб·R1) / (R1+R2).


Триод.

Триодом (Т) называют трехэлектродный электровакуумный прибор, имеющий катод, анод и сетку. Сетка – это электрод, кот. обычно выполнен в виде проволочной спирали и располагается в непосредственной близости от поверхности катода. Основное назначение С воздействовать на значение объемного заряда у катода и управлять электронным потоком, поэтому ее часто называют управляющей. На С относительно катода может подаваться как положит. так и отриц. потенциал. В качестве общего электрода, в триоде может выступать катод, сетка или анод. В соответствии с этим и схемы включения Т называются схемой с заземленным (общим) катодом, сеткой или анодом.

 

+Uc, электроны ускоряются и дойдут быстрее до анода. Ток анода растет.

-Uc, электроны тормозятся, не все дойдут до анода. Ток анода уменьшается.

Триоды можно применять как мощные усилители и генераторы в передающих устройствах, энергетических и электротехнических промышленных установках.

 

Кинескопы.

Кинескоп – это электронно-лучевая телевизионная трубка, предназначенная для приема изображений. Электронный прожектор, используемый в кинескопах строится по 3 х -линзовой схеме. Первый анод имеет больше диаметр, чем рядом расположенные, ускоряющий электрод и второй анод. Благодаря такой конструкции ток первого анода близок к нулю, что не изменяет фокусировку электронного луча при регулировании напряжения на модуляторе.

Для покрытия экранов в кинескопах обычно используют механическую смесь желтого и голубого люминофоров. Баллон (колба) кинескопа – весьма ответственная часть конструкции, определяющая, многие эксплуатационные характеристики трубки. Давление воздуха на экран очень велико, поэтому для обеспечения высокой механической прочности в целях безопасности экран выполняют из стекла толщиной до 10 мм.

Для подачи высокого напряжения на второй анод прожектора внутреннюю поверхность колбы покрывают аквадагом (проводящим графитовым слоем). Наружная поверхность трубок в широкой части часто тоже покрывают аквадагом. Внутреннее и внешнее покрытие электрически изолированы друг от друга, и образуют конденсатор фильтра высоковольтного выпрямителя.


Компараторы.

Компаратор (К) – устройство, предназначенное для сравнения двух напряжений. На выходе К устанавливается U, соответствующее логической единице: uвых = U1, если напряжение неинвертирующего входа u+вх больше напряжения инвертирующего входа u-вх. В противоположном случае, когда u-вх > u+вх, на выходе устанавливается напряжение соотв. логическому нулю: uвых = U0.

В качестве К можно использовать операционный усилитель. Однако уровни выходного U ОУ определяются напряжениями питания и не соответствуют уровням логических сигналов цифровых интегральных схем.

Как и в ОУ, в К входной каскад – дифференциальный. Для повышения чувствительности за диф. каскадом следует каскад усиления напряжения. Выходной каскад К отличается от соотв. каскада ОУ и представляет собой электронный ключ.

Вход. показатели компаратора:

Rвх, входной ток сдвига Iвх сд = Δiвх = j+ - j-, напряжение смещения Есм, дифф. коэфф усиления Кд, полоса пропускания – аналогичны соотв. параметрам ОУ.

Выходные показатели:

Уровни сигналов U0, U1, коэфф разветвления N – анлогичны показателям цифровых ИС.

Специфическим параметром К явл. зона неопределенности ΔUн, равная разности входных напряжений, которой соотв. выходные напряжения между U1 и U0:

ΔUн = (U1-U0) / KД.

К часто используют в качестве пороговых устройств, предназначенных для выделения сигналов, значения которых больше или меньше некоторого заданного. В таких устройствах на один вход подается сигнал, на другой – опорное напряжение – порог сравнения.


Операционные усилители.

ОУ – это схема, разработанная и впервые применяемая для выполнения разных алгебраических операций. ОУ имеют широкое применение для усиления сигнала, в схемах коррекции АЧХ, в фильтрах, генераторах.

ОУ – это усилитель с непосредственными связями, большим коэффициентом усиления, большим входным сопротивлением, дифференциальным входом, несимметричным выходом с малым выходным сопротивлением.

Рис. 1.

ОУ имеет 2 входа и 1 выход, питается от двухполярного источника питания.

Вх.1 назыв. неинвертирующим, т.к. входной и выходной сигнал совпадает по фазе.

Вх.2 – инвертирующий, т.к. выходной сигнал противоположный по фазе входному.

Параметры:

1. коэфф усиления очень большой

К = 10з - 106.

2. вых сопротивление очень маленькое Rвых ≈ 10 Ом.

3. входное сопротивление очень большое Rвх ≈ 100 кОм – 10 МОм.

4. широкая полоса пропускания fн = 10 Гц, fв = 10 МГц.

5. Маленькие искажения, фоны, помехи и дрейф нуля.

Рис. 2. Структурная схема ОУ.

1 каскад – дифференциальный каскад. 2 входа, 2 выхода. Обеспечивает большое Rвх ОУ, усиление сигнала, малый дрейф 0 и искажения.

2 каскад – дифференциальный. Выполняет те же функции, но имеет 2 входа и 1 выход, а значит обеспечивает переход к обыкновенному каскаду с одним входом.

3 каскад – схема сдвига уровня – эмиттерный повторитель, обеспечивающий компенсацию питающего U предыдущего каскада и усиление сигнала по току.

4 каскад – эмиттерный повторитель, обеспечивающий кроме усиления сигнала, маленькое Rвых, маленькие искажения, фоны, помехи, хорошую АЧХ.


Дифференциальные усилители.

Усилитель постоянного тока, выход. U которого пропорционально разности напряжений входных сигналов, назыв. дифференциальным усилителем (ДУ).

Основными параметрами ДУ являются:

1. коэфф. усиления напряжения КU = Uвых / Uвх.

2.коэфф ослабления синфазных входных напряжений Кос. сф, равный отношению коэфф усиления напряжения КU к коэфф передачи синфазного входного напряжения и характеризующий неидеальность ДУ по синфазной помехе; у идеального ДУ д.б. Кос. сф равно бесконечности.

3. U смещения, характеризующее несимметричность входного каскада ДУ, связанную с несовершенством технологии его изготовления, и равное постоянному диф. напряжению которое необходимо подать на вход, чтобы сбалансировать ДУ, т.е. сделать его выходное направление Uвых равным 0.

4. разность входных токов, также связанная с несимметрией входного каскада ДУ и равная току, который необходимо подать на один из входов, чтобы выходное напряжение установилось равным 0

5. входное сопротивление (дифференциальное) Rвх, определяемое на входных выводах ДУ и равное отношению изменения входного (дифференциального) напряжения к изменению входного тока.

6. выходное сопротивление Rвых (сотни Ом), определяемое на выходных выводах ДУ и равное отношению изменения выходного напряжения к изменению выходного тока.

7. максимальное выходное напряжение Uвых max (единицы вольт), при котором не искажается форма выходного сигнала

8. верхняя граничная частота полосы пропускания fв (около 1 МГц).

Рис. 1.

В такой схеме должно соблюдаться условие Uвх и Uвых = 0.

1. Пусть Uвх = 0 и подключен только источник питания, тогда по цепям протекает пост. ток, устанавливается пост. U, но т.к. обе половины схемы идентичны то Iк01 = Iк02, Uк01 = Uк02.

Значит, потенциал точки А равняется потенциалу точки В и Uвых = 0, условие выполняется.

2. Пусть на вход мы подаем 2 одинаковые по величине и по фазе сигнала (синфазные). Тогда Iк и Uк двух транзисторов изменяются на одинаковую величину, в результате потенциал точки А остается равным потенциалу точки В и Uвых = 0. Значит, ДУ не усиливает, не пропускает на выход синфазный сигнал.

3. Пусть на вход подаем одинаковые по величине, но противофазные сигналы. Тогда, на VT1 положительная полуволна, транзистор закрывается, Iк, Uк падают. На VT2 отрицательная полуволна, VT открыв., Iк, Uк возрастает. Потенциал точки А отличается от потенциала точки В и получаем Uвых, которое является напряжением усиленного сигнала.

Вывод: ДУ усиливает дифференциальный сигнал.

Такое функционирование схемы приводит к следующим положительным моментам.

1. Тот факт, что обе половины идентичны, приводит к тому, что постоянные токи питания в Rэ имеют одинаковые направления и слагаются, в результате Uэ удвоится, ООС по пост. току глубокая, что приводит к стабилизации рабочего режима.

2. Т.к. на вход подаются два противофазных сигнала, токи этих сигналов через Rэ имеют противоположное направление и компенсируются. В результате ООС для полезных сигналов минимальна и не влияет на усиление.

Все помехи, фоны, искажения, дрейф 0 относится к синфазным сигналам. Поэтому ДУ не пропускает их на выходе.


RC-генераторы.

Различают RC -генераторы с инвертирующим и неинвертирующим усилителями.

Инвертир. усилитель вносит фазовый сдвиг φк = π. Поэтому фазосдвигающая RC -цепь ОС на частоте генерируемых колебаний также должна вносить фазовый сдвиг φн = ± π. Пример такого генератора с трехфазной RC -цепью показан на рис. 1.a.

Рис. 1.

Распространена схема RC -генератора с так называемым мостом Вина (рис. 1.b).

В современных RC -генераторах часто применяют операционные усилители, коэффициент усиления которых значительно больше трех. Для уменьшения коэфф. усиления используют ООС. Эту же ООС используют и для динамического управления коэффициентом усиления, обеспечивающего выполнение баланса амплитуд без захода на нелинейные участки проходной ВАХ усилителя. Заметим, что в RC -генераторах работа усилительного элемента на нелинейном участке ВАХ создает неустранимые нелинейные искаж.

Рис. 2.

На рис. 2 показана схема RC -генератора на операционном усилителе. На неинвертирующий вход усилителя ч/з мост Вина подается напряжение частотно-зависимой положительной ОС. На инвертирующий вход ч/з делитель R1, R2 подается напряжение частотно-независимой ООС. Резистор R2 шунтирован сопротивлением канала полевого транзистора VT1. Сопротивление канала управляется напряжением затвора, равным выпрямленному U с входа генератора.



Поделиться:


Последнее изменение этой страницы: 2016-08-14; просмотров: 251; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.105.124 (0.2 с.)