Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Конгруэнтные процедуры генерацииСодержание книги Поиск на нашем сайте
Два целых числа а и b конгруэнтны (сравнимы) по модулю т, где т — целое число, тогда и только тогда, когда существует такое целое число k, что a-b=km, т. е. если разность a-b делится на т и если числа а и b дают одинаковые остатки от деления на абсолютную величину числа т. Например, 20-8=3*4 4. Мультипликативный метод Мультипликативный метод задает последовательность неотрицательных целых чисел { xi }, не превосходящих М, по формуле xi+1= l xi (mod M). Для машинной реализации наиболее удобна версия М = pg, где p - число цифр в системе счисления, принятой в ЭВМ, а g - число бит в машинном слове. Смешанный метод Позволяет вычислить последовательность неотрицательных целых чисел {Xi}, не превосходящих М, по формуле Хi = lХi + m (mod M). С вычислительной точки зрения смешанный метод генерации сложнее мультипликативного на одну операцию сложения, но при этом возможность выбора дополнительного параметра позволяет уменьшить возможную корреляцию получаемых чисел. В настоящее время почти все пакеты прикладных программ универсальных ЭВМ для вычисления последовательностей равномерно распределенных случайных чисел основаны на конгруэнтной процедуре. Проверка и улучшение качества последовательностей псевдослучайных чисел: проверка случайности, независимости, равномерности, характеристики качества генераторов, методы улучшения качества последовательностей. n Методы проверки делятся на § тесты проверки «случайности» -основываются на статистических критериях согласия, из которых наиболее употребительным является критерий Пирсона (хи-квадрат). § тесты проверки равномерности – то же самое; § тесты проверки независимости -проводится на основе вычисления корреляционного момента (1-линейная, (0,в)-не линейная зависимость, 0 – нет зависимости). Проверка равномерности Данный тест строится на основе применения критерия согласия χ2 (Пирсона). Если подсчитанное значение не попадает в доверительный интервал, то гипотезу о равномерном законе распределения случайной величины e следует отвергнуть. Дополнительно можно подсчитать эмпирическое математическое ожидание и эмпирическую дисперсию
И соответственно Гистограмма частот, являющаяся аналогом плотности распределения, строится следующим образом. n Весь интервал (хmin, хmax) полученной выборки случайной величины разбивается на q равных промежутков длины h. n Затем определяется число значений ni выборки, попавших в i-ый промежуток, после чего для каждого 1 £ i £ q строится прямоугольник с основанием на i-ом промежутке и высотой (ni /N)/h. Можно использовать метод проверки по косвенным признакам. Суть его сводится к следующему. Генерируемая последовательность разбивается на две последовательности x1, x3,…,x2i-1; x2, x4,…,x2i Если выполняется условие то фиксируется наступление некоторого события и в счетчик добавляется 1. После N/2 опытов в счетчике будет некоторое число k<N/2. Геометрически данное условие означает, что точка (x2i-1,x2i) находится внутри четверти круга радиусом 1. Теоретически вероятность попадания этой точки в четверть круга p=S1/4круга/Sквадрата=π/4 Если числа последовательности равномерны, то в силу закона больших чисел при больших N относительная частота 2k/N π/4
Проверка случайностей На практике обычно применяют тест проверки серий. Тест проверки серий предусматривает разбиение случайных цифр в исследуемой последовательности на элементы двух родов - первого и второго. Серией называется любой отрезок последовательности цифр, состоящий из следующих друг за другом элементов одного и того же рода. В практике встречается разновидность теста проверки серий, когда к элементам серий первого рода относят цифры, меньшие 0.5, а к элементам серий второго рода - не меньшие 0.5. Проверка независимости Проверка независимости элементов последовательности может быть проведена путем введения в рассмотрение последовательности {yj}={xi+τ}, где τ – величина сдвига последовательностей.
Для оценки степени некоррелированности последовательности псевдослучайных чисел e1, e2, ¼,eN можно применять способ, заключающийся в определении коэффициента корреляции r(ei,i) между элементом ei последовательности и его номером i: Если при заданном уровне значимости b коэффициент корреляции больше верхней границы доверительного интервала, то считается, что имеет место корреляционная связь между псевдослучайными числами. В противном случае можно принять гипотезу об их независимости Качество генераторов характеризуется: · Длина отрезка апериодичности L - последовательности псевдослучайных чисел {xi} есть наибольшее целое число L, такое, что при 0≤j<i≤L событие А{xi = xj} не имеет места (т.е. числа не повторяются). · Длина периода Р · Методы улучшения качества последовательностей псевдослучайных чисел: n Использование рекуррентных формул порядка r>1 - Длина отрезка апериодичности у такой последовательности гораздо больше. Однако при этом возрастает сложность метода, при приводит к увеличению затрат машинного времени на получение чисел n Метод возмущений -
В этом случае в основном используется формула xi+1= Φ (xi), и только когда i кратно М, последовательность возмущается, т.е. реализуется переход к формуле xi+1= Ψ (xi). Целое число М называется периодом возмущения.
|
|||||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 431; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.247.250 (0.009 с.) |