Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Принципы действия машинного перевода и их методы.

Поиск

Чтобы лучше понять принципы действия систем МП и их методы использования словарей и анализа грамматики, равно как и синтеза структур на выходном языке, мы на практике проведём сравнение нескольких текстов (специально отбирались тексты различные по стилю и тематике), используя несколько систем машинного перевода, созданных в разное время, для наглядного представления достигнутых успехов в данной области и прогнозирования возможных дальнейших шагов разработчиков программного обеспечения, осуществляющего машинный перевод.

Наиболее целесообразным способом анализа представляется выбор нескольких категорий исследуемых единиц, перевод их с помощью систем машинного перевода и последующее сравнение.

Система МП promt xt.

В основу программных продуктов компании PROMT поставлено решение следующих фундаментальных проблем:

Во-первых, всем ясно, что чем больше словарь, тем лучше перевод, значит, первая проблема - проблема создания больших словарей для систем.

Во-вторых, ясно, что система должна переводить такие предложения: «Привет, как дела?». Значит, еще одна проблема - научить систему распознавать устойчивые обороты.

В-третьих, понятно, что предложение для перевода пишется по определенным правилам, по определенным правилам переводится, а значит есть еще одна проблема: записать все эти правила в виде программы. Вот, собственно, и все.

Самое интересное, что эти проблемы действительно являются основными при разработке систем машинного перевода, другое дело, что методы их решения известны далеко не всем и отнюдь не так просты, как может показаться.

Методы организации больших баз данных достаточно хорошо разработаны, но для перевода не менее, а может быть, и более важно правильно структурировать информацию, которая приписывается элементу базы, правильно выбрать этот самый элемент. Сколько, например, записей в словаре должно соответствовать обыкновенному русскому слову "программа"? И, вообще, большой словарь - это словарь, который содержит много словарных статей, или словарь, который позволяет распознать много слов из текста? Очевидно, более верно второе. Поэтому для описания и входного, и выходного языка в системе должен существовать некоторый формальный метод описания морфологии, на котором основывается выбор единицы словаря.

Практически во всех системах, которые претендуют на то, чтобы считаться системами перевода, проблема представления морфологических моделей так или иначе решается. Но одни системы могут распознать миллион словоформ при объеме словаря в пятьдесят тысяч словарных статей, а другие при объеме словаря в сто тысяч словарных статей могут распознать именно эти сто тысяч.

В системах семейства PROMT разработано практически уникальное по полноте морфологическое описание для всех языков, с которыми системы умеют обращаться. Оно содержит 800 типов словоизменений для русского языка, более 300 типов, как для немецкого, так и для французского языка, и даже для английского, который не принадлежит к флективным языкам, выделено более 250 типов словоизменений. Множество окончаний для каждого языка хранится в виде древесных структур, что обеспечивает не только эффективный способ хранения, но и эффективный алгоритм морфологического анализа.

Кроме того, используемая модель морфологии позволила разработать экспертную систему для пользователя - создателя словаря. Эта система фактически автоматизирует процедуру выделения основы и определения типа словоизменения при вводе новых словарных статей.

Такой возможности нет ни в одной из существующих систем машинного перевода, даже в таких распространенных системах как Power Translator (Globalink, США), Language Assistant (MicroTac, США), TRANSEND (Intergaph,США), где пользователям приходится вручную спрягать и склонять слова для задания морфологической модели.

Однако разработка описания морфологии позволяет решить только проблему того, что является заголовком словарной статьи, по которому происходит идентификация единицы текста и единицы словаря. Но ведь идентификация слова из текста со словарной статьей происходит не ради идентификации, как это требуется в спеллерах или электронных словарях, она необходима для выполнения программой собственно процедур перевода. Какая же нужна информация в словарной статье и как должны быть описаны правила перевода для того, чтобы программа переводила?
Во многих системах МП в прошлом (как, впрочем, и сейчас) словарное описание и описание алгоритмов рассматривались как стороны одной проблемы, но решение, как правило, искалось в ограничении рассматриваемого мира, либо грамматического, либо семантического. Например, на основе признака "принадлежность к части речи" описывалась грамматика такого типа:
«именная группа - это существительное
именная группа - это прилагательное + именная группа
глагольная группа - это глагол + именная группа
предложение - это именная группа + глагольная группа»
Понятно, что некоторая часть предложений естественного языка описывается такой грамматикой, но эта часть очень незначительна, и на ее основе нельзя правильно анализировать и переводить хоть сколько-нибудь реальный текст. Но зато можно использовать эффективные методы построения преобразователя по заданной грамматике или, на худой конец, написать программу, которая путем перебора построит древа зависимостей для ограниченного множества предложений. Такие системы точно так же получали определения "экспериментальные".

Так или иначе, но именно из таких проектов появились системы перевода, которые сейчас предлагаются конечному пользователю. Это и Power Translator (компания Globalink) и Language Assistant (компания MicroTac) и TRANSEND (компания Intergraph).
Системы семейств STYLUS и PROMT - не исключение, поскольку многие специалисты компании PROMT имели опыт работы в такого типа проектах. Однако при разработке систем PROMT впервые был применен фактически революционный подход, который и позволил получить впечатляющие результаты. Системы перевода семейства PROMT - это системы, спроектированные на основе не лингвистических, а кибернетических методов.

Оказалось, что очень продуктивно рассматривать систему перевода не как транслятор, задачей которого является перевод текста, допустимого с точки зрения входной грамматики, а как некоторую сложную систему, задачей которой является получение результата при произвольных входных данных, в том числе и для текстов, которые не являются правильными для грамматики, с которой работает система.

Вместо принятого лингвистического подхода, предполагающего выделение последовательных процессов анализа и синтеза предложения, в основу архитектуры систем было положено представление процесса перевода как процесса с "объектно-ориентированной" организацией, основанной на иерархии обрабатываемых компонентов предложения. Это позволило сделать системы PROMT устойчивыми и открытыми.

Кроме того, такой подход дал возможность применения различных формализмов для описания перевода разных уровней. В системах работают и сетевые грамматики, близкие по типу к расширенным сетям переходов, и процедурные алгоритмы заполнения и трансформаций фреймовых структур для анализа сложных предикатов.
Описание лексической единицы в словарной статье, которое фактически не ограничено по размерам и может содержать множество различных признаков, тесно взаимосвязано со структурой алгоритмов системы и структурировано не на основе извечной антитезы синтаксис - семантика, а на основе уровней компонентов текста.

При этом системы могут работать и с не полностью описанными словарными статьями, что является важным моментом при открытии словарей для пользователя, от которого нельзя требовать тонкого обращения с лингвистическим материалом.

Первая система машинного перевода, выпущенная компанией PROMT в 1991 году, переводила с английского языка на русский специализированные тексты по программному обеспечению. Она использовала небольшой словарь - около 17 тыс. слов и выражений, работала в среде ДОС и не имела средств настройки для пользователя. Но уже эта первая система была правильно устроена, и нынешняя технология разработки алгоритмов машинного перевода, применяемая в компании PROMT, не претерпела значительных изменений. Напротив, найденный тогда подход оказался очень плодотворным для самых разных языков.

Вместе с развитием машинного перевода как области прикладной лингвистики появились и классификации систем, и стало принято делить системы перевода на системы типа TRANSFER и системы типа INTERLINGUA.

Это разделение основано на особенностях архитектурных решений для лингвистических алгоритмов.



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 259; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.113.24 (0.011 с.)