Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Показатели вариации. Кривая распределения. Критерии согласия.

Поиск

Конкретные условия, в которых находится каждый из изучаемых объектов, а также особенности их собственного развития (социальные, экономические и пр.) выражаются соответствующими числовыми уровнями статистических показателей. Таким образом, вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления.

Для измерения вариации в статистике применяют несколько способов.

Наиболее простым является расчет показателя размаха вариации Н как разницы между максимальным (Xmax) и минимальным (Xmin) наблюдаемыми значениями признака:

H=Xmax - Xmin.

Однако размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается.

Более строгими характеристиками являются показатели колеблемости относительно среднего уровня признака. Простейший показатель такого типа – среднее линейное отклонение Л как среднее арифметическое значение абсолютных отклонений признака от его среднего уровня:

При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной:

(Напомним, что алгебраическая сумма отклонений от среднего уровня равна нулю.)

Показатель среднего линейного отклонения нашел широкое применение на практике. С его помощью анализируются, например, состав работающих, ритмичность производства, равномерность поставок материалов, разрабатываются системы материального стимулирования. Но, к сожалению, этот показатель усложняет расчеты вероятностного типа, затрудняет применение методов математической статистики. Поэтому в статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии.

Дисперсия признака (s2) определяется на основе квадратической степенной средней:

.

Показатель s, равный , называется средним квадратическим отклонением.

В общей теории статистики показатель дисперсии является оценкой одноименного показателя теории вероятностей и (как сумма квадратов отклонений) оценкой дисперсии в математической статистике, что позволяет использовать положения этих теоретических дисциплин для анализа социально-экономических процессов.

Если вариация оценивается по небольшому числу наблюдений, взятых из неограниченной генеральной совокупности, то и среднее значение признака определяется с некоторой погрешностью. Расчетная величина дисперсии оказывается смещенной в сторону уменьшения. Для получения несмещенной оценки выборочную дисперсию, полученную по приведенным ранее формулам, надо умножить на величину n / (n - 1). В итоге при малом числе наблюдений (< 30) дисперсию признака рекомендуется вычислять по формуле

.

Обычно уже при n > (15÷20) расхождение смещенной и несмещенной оценок становится несущественным. По этой же причине обычно не учитывают смещенность и в формуле сложения дисперсий.

Если из генеральной совокупности сделать несколько выборок и каждый раз при этом определять среднее значение признака, то возникает задача оценки колеблемости средних. Оценить дисперсию среднего значения можно и на основе всего одного выборочного наблюдения по формуле

,

где n – объем выборки; s2 – дисперсия признака, рассчитанная по данным выборки.

Величина носит название средней ошибки выборки и является характеристикой отклонения выборочного среднего значения признака Х от его истинной средней величины. Показатель средней ошибки используется при оценке достоверности результатов выборочного наблюдения.

Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней

.

2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины

.

3. Коэффициент вариации:

является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

У такого способа оценки вариации есть и существенный недостаток. Действительно, пусть, например, исходная совокупность рабочих, имеющих средний стаж 15 лет, со средним квадратическим отклонением s = 10 лет, «состарилась» еще на 15 лет. Теперь = 30 лет, а среднеквадратическое отклонение по-прежнему равно 10. Совокупность, ранее бывшая неоднородной (10/15 × 100 = 66,7%), со временем оказывается, таким образом, вполне однородной (10/30 × 100 = 33,3 %).

В характере и типе закономерностей распределения отражаются общие условия вариации признака – сущность явления и те его свойства и условия, которые определяют изменчивость изучаемого признака.
Схематически (графически) любые реальные распределения можно изобразить в виде некоторой кривой, воспроизводящей основные особенности данного распределения.
В настоящее время изучено сравнительно большое число различных теоретических кривых распределения, из которых в практике статистических исследований производства часто используются следующие: нормальное распределение, распределение Пуассона, биномиальное распределение и некоторые другие.
Подробно основные типы теоретических кривых распределения рассматриваются в дисциплине «Теория вероятности и математическая статистика» В данном вопросе нам нужно получить общее представление об основных свойствах широко применяемых типов распределения.
Типы распределения имеют аналитическое выражение в виде закона распределения. Используя свойства того или иного закона распределения можно глубже проанализировать изучаемое явление, прогнозировать распределение и т.д.
Закон нормального распределения. Наиболее глубоко изучен в теории вероятностей и достаточно полно раскрыты условия, при которых он возникает. При разработке многих примеров математической статистики исходят из предположения о наличии в изучаемой совокупности нормативного распределения.
Основными параметрами, характеризующими нормальное распределение, являются средняя арифметическая () и среднее квадратическое отклонение ().
Кривая нормального распределения является одновершинной (при Xmax=), обладает симметричностью (кривая равномерно убывает в обе стороны от середины (Xmax=), образуя две равные и подобные ветви). Она имеет две точки перегиба, т.е. точки, в которых кривая из вогнутой становится выгнутой и наоборот. Точки перегиба кривой нормального распределения находятся вправо и влево от центра () по оси общие на расстоянии, равном и 2. Обе ветви кривой нормального распределения асимптотически приближаются к оси абсцисс.

Закон нормального распределения лежит в основе многих теорем и методов статистики при оценке репрезентативности выборки (расчете ошибки выборки и распространении характеристик выборки на генеральную совокупность); измерении степени тесноты связи и составлении модели регрессии; построении и использование статистических критериев и др.
Как показывают многочисленные статистические исследования, частоты (частости) эмпирических распределений за редким исключением будут отличаться от значений теоретического распределения. Расхождения между частотами (частостями) эмпирического и теоретического распределения могут быть несущественными и объяснены случайностями выборки и существенными при несоответствии выбранного и эмпирического законов распределения.
Для проверки гипотезы о соответствии эмпирического распределения теоретическому закону нормального распределения используются особые статистические показатели-критерии согласия (или критерии соответствия). К ним относятся критерии Пирсона, Колмогорова, Романовского, Ястремского и др.
Большинство критериев согласия базируется на использовании отклонений эмпирических частот то теоретических. Очевидно, что чем больше эти отклонения, тем хуже теоретическое распределения соответствует (описывает) эмпирическому (эмпирическое). Статистические характеристики таких критериев согласия являются некоторыми функциями этих отклонений.



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 277; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.30.14 (0.01 с.)