Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Макроэкономическая статистика↑ Стр 1 из 5Следующая ⇒ Содержание книги Поиск на нашем сайте
Общая теория статистики 1. Предмет, метод статистики, основные категории статистики. 2. Статистическое наблюдение, понятие, основные требования, предъявляемые к статистическим данным. 3. Формы организации, способы проведения и виды статистического наблюдения. 4. Виды статистических группировок и решаемые ими задачи. 5. Статистические таблицы, правила построения, область применения. Виды статистических таблиц. 6. Абсолютные и относительные величины в статистике, единицы измерения. 7. Средние величины, виды средних. Научные основы расчета средних величин. 8. Степенные средние, формы и примеры использования средних величин. 9. Структурные средние и их применение в статистике. 10. Понятие вариации признаков, показатели вариации. Значение и задачи изучения вариации. 11. Дисперсия, ее свойства. 12. Правило сложения дисперсий. Коэффициент детерминации и эмпирическое корреляционное отношение. 13. Среднее значение и вариация альтернативного признака. 14. Выборочное наблюдение, преимущества и недостатки. 15. Способы формирование выборочной совокупности. 16. Средняя и предельная ошибки выборки. Взаимосвязь показателей ошибки выборки с объемом выборочной совокупности и способом отбора. 17. Ряды динамики, их элементы и правила построения. Виды рядов динамики. 18. Статистические показатели динамики общественных явлений. 19. Исчисление среднего уровня и средних показателей динамики. 20. Методы выявления тенденций развития по рядам динамики. 21. Понятие и способы проведения интерполяции и экстраполяции. 22. Изучение сезонных колебаний. 23. Понятие индекса. Виды индексов, задачи их применения. 24. Агрегатный индекс как основная форма общего индекса. Правила построения, анализ абсолютных приростов. 25. Преобразование агрегатных индексов в средний арифметический и средний гармонический индексы. 26. Индексы средних величин. Индексы постоянного состава и влияния структурных изменений на динамику средней величины. 27. Использование индексного метода в экономическом факторном анализе. 28. Территориальные индексы, их значение, способы построения. 29. Статистические графики, их элементы, правила построения, область применения. Статистическая отчетность Основная форма статистического наблюдения, которая заключается в получении статистическими органами данных от единиц наблюдения. Данные поступают в органы статистики от предприятий и организаций в виде обязательных отчетов об их деятельности. Отчётные документы утверждаются Министерством финансов РФ и Госкомстатом РФ. Методы и формы организации статистической отчетности дифференцируются применительно к различным типам предприятий и формам предпринимательства. Основными формами ответности являются бухгалтерский баланс и отчет о прибылях и убытках. Специально организованное наблюдение Заключается в получении данных, которые в силу тех или иных причин не вошли в отчетность или для проверки данных отчетности. Представляет собой сбор данных посредством переписей и единовременных учетов. Регистровое наблюдение Основано на ведении статистического регистра, с помощью которого осуществляется непрерывный статистический учет за долговременными процессами, имеющими фиксированное начало, стадию развития и фиксированное окончание. Виды статистического наблюдения по времени регистрации: Текущее (непрерывное) наблюдение - проводится для изучения текущих явлений и процессов. Регистрация фактов осуществляется по мере их свершения. (регистрация семейных браков и разводов) Прерывное наблюдение — проводится по мере необходимости, при этом допускаются временные разрывы в регистрации данных: Периодическое наблюдение — проводится через сравнительно равные интервалы времени (перепись населения). Единовременное наблюдение — осуществляется без соблюдения строгой периодичности его проведения. По полноте охвата единиц совокупности различают следующие виды статистического наблюдения: Сплошное наблюдение — представляет собой сбор и получение информации обо всех единицах изучаемой совокупности. Характеризуется высокими материальными и трудовыми затратами, недостаточной оперативностью информации. Применяется при переписи населения, при сборе данных в форме отчетности, охватывающей крупные и средние предприятия разных форм собственности. Несплошное наблюдение — основано на принципе случайного отбора единиц изучаемой совокупности, при этом в выборочной совокупности должны быть представлены все типы единиц, имеющихся в совокупности. Имеет ряд преимущств перед сплошным наблюдением: сокращение временных и денежных затрат. Несплошное наблюдение подразделяется на: § Выборочное наблюдение - основано на случайном отборе единиц, которые подвергаются наблюдению. § Монографическое наблюдение — заключается в обследовании отдельных единиц совокупности, характеризующихся редкими качественными свойствами. Пример монографического наблюдения: характеристика работы отдельных предприятий, для выявления недостатков в работе или тенденций развития. § Метод основного массива — состоит в изучении самых существенных, наиболее крупных единиц совокупности, имеющих по основному признаку наибольший удельный вес в изучаемой совокупности. § Метод моментных наблюдений — заключается в проведении наблюдений через случайные или постоянные интервалы времени с отметками о состоянии исследуемого объекта в тот или иной момент времени. § Непосредственное статистическое наблюдение — наблюдение, при котором сами регистраторы путем непосредственного замера, взвешивания, подсчета устанавливают факт подлежащий регистрации. § Документальное наблюдение — основано на использовании различного рода документов учетного характера. § Опрос - заключается в получении необходимой информации непосредственно от респондента.
§ Экспедиционный — регистраторы получают необходимую информацию от опрашиваемых лиц и сами фиксируют ее в формулярах. § Способ саморегистрации — формуляры заполняются самими респондентами, регистраторы только раздают бланки и объясняют правила их заполнения. § Корреспондентский — сведения в соответствующие органы сообщает штат добровольных корреспондентов. § Анкетный — сбор информации осуществляется в виде анкет, представляющих собой специальные вопросники, удобен в случаях, когда не требуется высокая точность результатов. § Явочный — заключается в предоставлении сведений в соответствующие органы в явочном порядке. 4. Виды статистических группировок и решаемые ими задачи. Группировкой называется расчленение единиц изучаемой совокупности на однородные группы по определенным признакам. Группировки являются важнейшим статистическим методом обобщения статистических данных, основой для правильного исчисления статистических показателей. С помощью метода группировок решаются следующие задачи: -выделение социально-экономических типов явлений, -изучение структуры явления и структурных сдвигов, происходящих в нем -выявление связи и зависимости между явлениями. В соответствии с этими задачами различают следующие виды группировок: типологические, структурные, аналитические. Типологическая группировка – это расчленение разнородной совокупности на отдельные качественно однородные группы и выявление на этой основе экономических типов явлений. При построении группировки этого вида основное влияние должно быть уделено идентификации типов и выбору группировочного признака. Решение вопроса об основании группировки должно осуществляться на основе анализа сущности изучаемого явления. Структурной называется группировка, которая предназначена для изучения состава однородной совокупности по какому-либо варьирующему признаку. Группировка, выявляющая взаимосвязи между изучаемыми явлениями и их признаками, называется аналитической группировкой. В статистике признаки делятся на факторные и результативные. Факторными называются признаки, под действием которых изменяются другие – результативнее признаки. Взаимосвязь проявляется в том, что с возрастанием значения факторного признака систематически возрастает или убывает значение признакарезультативного. Особенностями аналитической группировки являются то, что, во-первых, единицы группируются по факторному признаку, и, во-вторых, каждая группа характеризуется средними величинами результативного признака. Все рассмотренные группировки объединяет то, что единицы объекта разделены на группы по какому-либо признаку. Группировка, в которой группы образованы по одному признаку, называется простой. Комбинационной называется группировка, в которой расчленение совокупности на группы производится по двум и более признакам, взятым в сочетании. Сначала группы формируются по одному признаку, затем группы делятся на подгруппы по другому признаку и т.д. Таким образом, комбинационные группировки дают возможность изучить единицы совокупности одновременно по нескольким признакам. 5. Статистические таблицы, правила построения, область применения. Виды статистических таблиц. Статистическая таблица - это цифровое выражение итоговой характеристики всей наблюдаемой совокупности или ее составных частей по одному или нескольким существенным признакам. Статистическая таблица содержит два элемента: подлежащее и сказуемое. Подлежащее статистической таблицы есть перечень групп или единиц, составляющих исследуемую совокупность единиц наблюдения. Сказуемое статистической таблицы - это цифровые показатели, с помощью которых дается характеристика выделенных в подлежащем групп и единиц. Различают простые, групповые и комбинационные таблицы. В простых таблицах, как правило, содержится справочный материал, где дается перечень групп или единиц, составляющих объект изучения. При этом части подлежащего не являются группами одинакового качества, отсутствует систематизация изучаемых единиц. Сказуемое этих таблиц содержит абсолютные величины, отражающие объемы изучаемых процессов. Групповые и комбинационные таблицы предназначены для научных целей, где, в отличие от простых таблиц, в сказуемом - средние и относительные величины на основе абсолютных величин. Групповая таблица - это таблица, где статистическая совокупность разбивается на отдельные группы по какому-либо одному существенному признаку, при этом каждая группа характеризуется рядом показателей. Примером такой группировки может быть разделение российских семей на группы по месту проживания (сельское и городское), где образуются подгруппы семей по количеству детей. Анализ этих группировок по материалам переписи 1989 года позволил сделать вывод, что большинство семей, независимо от принадлежности к городскому или сельскому населению, имеют только по одному ребенку. Комбинационная таблица - это таблица, где подлежащее представляет собой группировку единиц совокупности по двум и более признакам, которые распределяются на группы сначала по одному признаку, а затем на подгруппы по другому признаку внутри каждой из уже выделенных групп. Комбинационная таблица устанавливает существенную связь между факторами группировки. Примером комбинационной группировки может быть распределение полиграфических предприятий по трем существенным признакам: степени оснащенности современным полиграфическим оборудованием, степени применения современных технологий и уровню производительности труда. Такого рода статистические таблицы позволяют осуществить всесторонний анализ, но они менее наглядны. При составлении таблиц необходимо соблюдать общие правила: таблица должна быть легко обозримой; общий заголовок должен кратко выражать основное содержание; наличие строк «общих итогов»; наличие нумерации строк, которые заполняются данными; соблюдение правила округления чисел. 6. Абсолютные и относительные величины в статистике, единицы измерения. Статистические показатели в форме абсолютных величин характеризуют абсолютные размеры изучаемых статистикой процессов и явлений, отражают их временные характеристики, объем совокупности. Единицы измерения в абсолютных величинах представлены в натуральном выражении: тонны, литры, штуки, рубли и т.д. Абсолютные величины в статистике могут быть индивидуальными или суммарными, в зависимости от единиц измерения – трудовые (чел.-час., чел.-дни и т.д.), стоимостные (рубли или другие денежные единицы) или натуральные (килограммы, штуки, тонны, литры, метры и т.д.). Все относительные показатели в статистике подразделяются на относительные показатели: · динамики; · плана; · реализации плана; · структуры; · координации; · интенсивности и уровня экономического развития; · сравнения. Результатом будет значение единиц структурной части, приходящихся на 1 единицу базисной. 7. Средние величины, виды средних. Научные основы расчета средних величин. Средней величиной называют показатель, который характеризует обобщенное значение признака или группы признаков в исследуемой совокупности. На этапе статистической обработки могут быть поставлены самые различные задачи исследования, для решения которых нужно выбрать соответствующую среднюю. При этом необходимо руководствоваться следующим правилом: величины, которые представляют собой числитель и знаменатель средней, должны быть логически связаны между собой. Используются две категории средних величин: · степенные средние; · структурные средние. Первая категория степенных средних включает: среднюю арифметическую, среднюю гармоническую, среднюю квадратическую и среднюю геометрическую. Вторая категория (структурные средние) - это мода и медиана. Введем следующие условные обозначения: - величины, для которых исчисляется средняя; - средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений; - частота (повторяемость индивидуальных значений признака). Средние величины бывают простые и взвешенные. Взвешенными средними называют величины, которые учитывают, что некоторые варианты значений признака могут иметь различную численность, в связи с чем каждый вариант приходится умножать на эту численность. Иными словами, «весами» выступают числа единиц совокупности в разных группах, т.е. каждый вариант «взвешивают» по своей частоте. Частоту f называют статистическим весом или весом средней. Средняя арифметическая - самый распространенный вид средней. Она используется, когда расчет осуществляется по несгруппированным статистическим данным, где нужно получить среднее слагаемое. Средняя арифметическая - это такое среднее значение признака, при получении которого сохраняется неизменным общий объем признака в совокупности. Средняя гармоническая. Эту среднюю называют обратной средней арифметической, поскольку эта величина используется при k = -1. Простая средняя гармоническая используется тогда, когда веса значений признака одинаковы. Ее формулу можно вывести из базовой формулы, подставив k = -1: Средняя геометрическая. Чаще всего средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000). Существуют формулы для простой и взвешенной средней геометрической. Средняя квадратическая величина. Основной сферой ее применения является измерение вариации признака в совокупности (расчет среднего квадратического отклонения). 8. Степенные средние, формы и примеры использования средних величин. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. 9. Структурные средние и их применение в статистике. Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода, или так называемые структурные средние. Если средняя арифметическая рассчитывается на основе использования всех вариантов значений признака, то медиана и мода характеризуют величину того варианта, который занимает определенное среднее положение в ранжированном вариационном ряду. Медиана (Ме) - это величина, которая соответствует варианту, находящемуся в середине ранжированного ряда. Для ранжированного ряда с нечетным числом индивидуальных величин (например, 1, 2, 3, 3, 6, 7, 9, 9, 10) медианой будет величина, которая расположена в центре ряда, т.е. пятая величина. Для ранжированного ряда с четным числом индивидуальных величин (например, 1, 5, 7, 10, 11, 14) медианой будет средняя арифметическая величина, которая рассчитывается из двух смежных величин. Для нашего случая медиана равна (7+10): 2= 8,5. То есть для нахождения медианы сначала необходимо определить ее порядковый номер (ее положение в ранжированном ряду) по формуле (7.3) Модой (Мо) называют значение признака, которое встречается наиболее часто у единиц совокупности. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой. Чтобы найти конкретное значение моды, необходимо использовать формулу (7.5) где xМо - нижняя граница модального интервала; iМо - величина модального интервала; fМо - частота модального интервала; fМо-1 - частота интервала, предшествующего модальному; fМо+1 - частота интервала, следующего за модальным. Мода имеет широкое распространение в маркетинговой деятельности при изучении покупательского спроса, особенно при определении пользующихся наибольшим спросом размеров одежды и обуви, при регулировании ценовой политики. 10. Понятие вариации признаков, показатели вариации. Значение и задачи изучения вариации. Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности непостоянны, более или менее различаются между собой. Вариация - колеблемость, изменяемость величины признака у единиц совокупности. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Недостаточность средней величины для полной характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака. Наличие вариации обусловлено влиянием большого числа факторов на формирование уровня признака. Эти факторы действуют с неодинаковой силой и в разных направлениях. Для описания меры изменчивости признаков используют показатели вариации. Задачи статистического изучения вариации: 1) изучение характера и степени вариации признаков у отдельных единиц совокупности; 2) определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности. В статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация. Исследование вариаций имеет важное значение. Измерение вариаций необходимо при проведении выборочного наблюдения, корреляционном и дисперсионном анализе и т. д. По степени вариации можно судить об однородности совокупности, об устойчивости отдельных значений признаков и типичности средней. На их основе разрабатываются показатели тесноты связи между признаками, показатели оценки точности выборочного наблюдения. Различают вариацию в пространстве и вариацию во времени. Под вариацией в пространстве понимают колеблемость значений признака у единиц совокупности, представляющих отдельные территории. Под вариацией во времени подразумевают изменение значений признака в различные периоды времени. Для изучения вариации в рядах распределения проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда. 11. Дисперсия, ее свойства. Дисперсия ( ) - средняя из квадратов отклонений вариантов значений признака от их средней величины: Или для не сгруппированных данных, для сгруппированных данных. Свойства дисперсии. 1. Дисперсия постоянной величины равна 0. 2. Уменьшение всех значений признака на одну и ту же величину не изменяет величину дисперсии: 3. Уменьшение всех значений признака в к раз уменьшает дисперсию в k2раз: 4. Средний квадрат отклонений, исчисленный от среднего арифметического, всегда будет меньше среднего квадрата отклонений, исчисляемого от любой другой величины: > . Величина различия между ними вполне определенная, это квадрат разности между средней и этой условной величиной А. , , . 12. Правило сложения дисперсий. Коэффициент детерминации и эмпирическое корреляционное отношение. Согласно правилу сложения дисперсий, общая дисперсия равна суммесредней из внутригрупповых и межгрупповой дисперсий. Эмпирический коэффициент детерминации широко используется в задачах статистики и является показателем, который представляет долюмежгруппопой дисперсии в общей дисперсии результативного признака и характеризует силу влияния группировочного признака на образование общей вариации. Он может быть рассчитан по формуле:Данный коэффициент показывает долю вариации результативного признака у под влиянием фактора х. При отсутствии связи эмпирический коэффициент детерминации равен нулю, а при функциональной сильной связи — единице. Эмпирическое корреляционное отношение представляется как корень квадратный из эмпирического коэффициента детерминации. Оно показывает тесноту связи между статистическими данными и определяется по формуле: где числитель — дисперсия групповых средних; знаменатель — общая дисперсия. Корреляционное отношение равно нулю, если связи между данными нет. В таком случае все групповые средние будут равны между собой и межгрупповой вариации не будет. Корреляционное отношение равно единице тогда, когда связь функциональная. В этом случае дисперсия групповых средних будет равна общей дисперсии, т. е. внутригрупповой вариации не будет. Чем значения корреляционного отношения ближе к единице, тем сильнее, ближе к функциональной зависимости связь между признаками. Собственно-случайная состоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки. Доля выборки есть отношение числа единиц выборочной совокупности n к численности единиц генеральной совокупности N, т.е. § механическая состоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы). При этом размер интервала в генеральной совокупности равен обратной величине доли выборки. Так, при 2%-ной выборке отбирается каждая 50-я единица (1:0,02), при 5%-ной выборке — каждая 20-я единица (1:0,05) и т.д. Таким образом, в соответствии с принятой долей отбора, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица. § типическая – при которой генеральная совокупность вначале расчленяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность. Важной особенностью типической выборки является то, что она дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность; § серийная - при которой генеральную совокупность делят на одинаковые по объему группы - серии. В выборочную совокупность отбираются серии. Внутри серий производится сплошное наблюдение единиц, попавших в серию; Комбинированная - выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц. В статистике различают следующие способы отбора единиц в выборочную совокупность: § одноступенчатая выборка - каждая отобранная единица сразу же подвергается изучению по заданному признаку (собственно-случайная и серийная выборки); Многоступенчатая выборка - производят подбор из генеральной совокупности отдельных групп, а из групп выбираются отдельные единицы (типическая выборка с механическим способом отбора единиц в выборочную совокупность). Кроме того различают: § повторный отбор – по схеме возвращенного шара. При этом каждая попавшая в выборку единица иди серия возвращается в генеральную совокупность и поэтому имеет шанс снова попасть в выборку; Абсолютные показатели 1. Число родившихся за период (Р) 2. Число умерших за период (У) 3. Естественный прирост (убыль) населения, который определяется как разность между числом родившихся и умерших за период: ЕП = Р — У Относительные показатели Среди показателей движения населения выделяют: коэффициент рождаемости, коэффициент смертности, коэффициент естественного прироста и коэффициент жизненности. Все коэффициенты, кроме коэффициента жизненности, рассчитываются в промилле, т. е. на 1000 человек населения, а коэффициент жизненности определяется в процентах (т. е. на 100 человек населения). Общий коэффициент рождаемости Показывает, сколько человек рождается в течение календарного года в среднем на каждую 1000 человек наличного населения Общий коэффициент смертности Показывает, сколько человек умирает в течение календарного года в среднем на каждую 1000 человек наличного населения и определяется по формуле: Коэффициент естественного прироста Показывает величину естественного прироста (убыли) населения в течение календарного года в среднем на 1000 человек наличного населения и вычисляется двумя способами: Коэффициент жизненности Показывает соотношение между рождаемостью и смертностью, характеризует воспроизводство населения. Если Коэффициент жизненности меньше 100%, то население региона вымирает, если выше 100%, то численность населения увеличивается. Этот коэффициент определяется двумя способами: Специальные показатели В демографической статистике кроме общих коэффициентов рассчитывают также специальные показатели: Коэффициент брачности Показывает, сколько браков приходится на 1000 человек в течение календарного года. К брачности = (число лиц, вступивших в брак / среднегодовая численность населения)*1000 Коэффициент разводимости Показывает, сколько разводов приходится на каждую тысячу населения в течение календарного года. Например, в 2000 г. в России на каждую 1000 человек населения приходилось 6,2 браков и 4,3 разводов. К разводимости = (число лиц, разведенных в году / среднегодовая численность населения)*1000 Коэффициент младенческой смерти Вычисляется как сумма двух составляющих (в промилле). Первая — отношение числа умерших в возрасте до одного года из поколения, родившегося в этом году, для которого вычисляется коэффициент, к общему числу родившихся в этом году. Вторая — отношение числа умерших в возрасте до одного года из поколения, родившегося в предшествующем году, к общему числу родившихся в предыдущем году. В 2000 г. этот показатель составлял в нашей стране 15,3‰. К младенческой смертности = (число умерших детей в возрасте до 1 года / число родившихся живыми за год)*1000 Возрастной коэффициент рождаемости Показывает число родившихся в среднем на 1000 женщин каждой возрастной группы Специальный коэффициент рождаемости (плодовитости) Показывает, какое количество рождений приходится в среднем на 1000 женщин в возрасте от 15 до 49 лет. Возрастной коэффициент смертности Показывает среднее число умерших на 1000 человек населения данной возрастной группы. Суммарный коэффициент рождаемости Зависит от возрастного состава населения и показывает, сколько в среднем детей родила бы одна женщина на протяжении её жизни при сохранении в каждом возрасте существующего уровня рождаемости. Ожидаемая продолжительность жизни при рождении Один из важнейших показателей, рассчитываемых в международной демографической статистике. Он показывает число лет, которое в среднем предстояло бы прожить человеку из поколения родившихся при условии, что на протяжении всей жизни этого поколения половозрастная смертность останется на уровне того года, для которого вычислен этот показатель. Он рассчитывается с помощью составления и анализа таблиц смертности, в которых для каждого поколения вычисляется численность выживших и умерших. Коэффициент эффективности воспроизводства населения Показывает долю естественного прироста в общем обороте населения — число родившихся за год — число умерших за год Общая теория статистики 1. Предмет, метод статистики, основные категории статистики. 2. Статистическое наблюдение, понятие, основные требования, предъявляемые к статистическим данным. 3. Формы организации, способы проведения и виды статистического наблюдения. 4. Виды статистических группировок и решаемые ими задачи. 5. Статистические таблицы, правила построения, область применения. Виды статистических таблиц. 6. Абсолютные и относительные величины в статистике, единицы измерения. 7. Средние величины, виды средних. Научные основы расчета средних величин. 8. Степенные средние, формы и примеры использования средних величин. 9. Структурные средние и их применение в статистике. 10. Понятие вариации признаков, показатели вариации. Значение и задачи изучения вариации. 11. Дисперсия, ее свойства. 12. Правило сложения дисперсий. Коэффициент детерминации и эмпирическое корреляционное отношение. 13. Среднее значение и вариация альтернативного признака. 14. Выборочное наблюдение, преимущества и недостатки. 15. Способы формирование выборочной совокупности. 16. Средняя и предельная ошибки выборки. Взаимосвязь показателей ошибки выборки с объемом выборочной совокупности и способом отбора. 17. Ряды динамики, их элементы и правила построения. Виды рядов динамики. 18. Статистические показатели динамики общественных явлений. 19. Исчисление среднего уровня и средних показателей динамики. 20. Методы выявления тенденций развития по рядам динамики. 21. Понятие и способы проведения интерполяции и экстраполяции. 22. Изучение сезонных колебаний. 23. Понятие индекса. Виды индексов, задачи их применения. 24. Агрегатный индекс как основная форма общего индекса. Правила построения, анализ абсолютных приростов. 25. Преобразование агрегатных индексов в средний арифметический и средний гармонический индексы. 26. Индексы средних величин. Индексы постоянного состава и влияния структурных изменений на динамику средней величины. 27. Использование индексного метода в экономическом факторном анализе. 28. Территориальные индексы, их значение, способы построения. 29. Статистические графики, их элементы, правила построения, область применения. Макроэкономическая статистика 1. Предмет изучения макроэкономической статистики, задачи, связь с другими науками, система показателей. 2. Население как объект статистического изучения. Основные задачи статистики населения. 3. Изучение численности населения, основные виды группировок. 4. Основные показатели естественного движения населения. 5. Основные показатели механического движения населения. 6. Понятие рынка труда, задачи статистического изучения. 7. Основные категории рынка труда. Экономически активное, экономически неактивное население. 8. Понятие тр
|
||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 334; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.186.78 (0.018 с.) |