Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Биномиальный закон (распределение Бернулли)Содержание книги
Поиск на нашем сайте
В общей форме биномиальный закон описывает осуществление признака в испытаниях с возвратом. Наглядной схемой таких испытаний является последовательный выбор с возвращением шаров из урны, содержащей белых и чёрных шаров. Если — число появления белых шаров в выборке из шаров, то где — вероятность появления при одном извлечении соответственно белого и чёрного, Производящая функция биномиального распределения задаётся формулой
Основные характеристики биномиального распределения (математическое ожидание и дисперсия):
Пример 1. Вероятность получения бракованного изделия равна 0,01. Какова вероятность того, что среди 100 изделий окажется не более 3 бракованных?
Решение. Пусть . Согласно биномиальному закону и закону сложения имеем
Билет 7. Непрерывные и дискретные случайные величины. Плотность вероятности. Нормальный закон распределения. Математическое распределение и дисперсия. Графическое представление. Примеры.
Случайная величина (далее СВ) – величина, которая принимает значение в зависимости от стечения случайных обстоятельств. (Пр.: число больных на приеме врача, число студентов в аудитории, номер бочонка, когда его вынимают из мешка, при игре в лото и т.п.) СВ называется дискретной (далее – ДСВ), если она принимает счетное множество значений. (Пр.: число букв на произвольной странице книге, число волос на голове человека, число молекул в выделенном объеме газа и т.п.) СВ называется непрерывной (далее – НСВ), если она принимает любые значения внутри некоторого интервала. (Пр.: температура тела, масса зерен в колосьях пшеницы и т.п.) Вероятность - предел, к которому стремится частота события при неограниченном увеличении числа испытаний. (статистическое определение) P(A)=limn→∞(m/n) - отношение благоприятствующих случаев к общему числу равновозможных случаев к общему числу равновозможных несовместимых событий. (классическое опредедение) P(A)=(m/n) Распределение вероятностей — закон, описывающий область значений СВ и вероятности их принятия.
dP=f(x)dx dP – вероятность того, что НСВ Х принимает значения между х и х+dх. Вероятность dP прямо пропорциональна интервалу dx. f(x) – плотность вероятности (функция распределения вероятностей). Показывает, как изменяется вероятность, отнесенная к интервалу dx случайной величины, в зависимости от самой этой величины. f(x)=dP/dx x F(x)=∫f(x)dx - функция распределения НСВ. Равна вероятности того, что СВ -∞ принимает значения, меньшие х. F(x)=(-∞<X<x)
Нормальный закон распределения (закон Гаусса). СВ распределена по этому закону, если плотность вероятности имеет вид a=M(X) – мат.ожидание СВ, σ – среднее квадратическое отклонение, σ2- дисперсия СВ. Дисперсия СВ – МО отклонения случайной величины от ее МО. D(X)=M[X-M(X)] Удобная формула: D(X)=M(X2)-[M(X)]2 Кривая закона носит колокообразную форму, симметричную относительно прямой х=а (центр рассеивания). В точке х=а функция достигает максимума.
По мере возрастания |х-а| функция f(x) монотонно убывает, асимптотически приближаясь к нулю. С уменьшением σ кривая становится все более и более островершинной. Изменение а при постоянной σ не влияет на форму кривой, а лишь сдвигает ее вдоль оси абсцисс. Площадь, заключенной под кривой, согласно условию нормировки, равна единице. На рисунке изображены три кривые. Для кривых 1 и 2 а=0, но отличаются значением σ (σ1<σ2), кривая 3 имеет а≠0, σ=σ2. Вычислим функцию распределения. Обычно используют иное выражение. Введем новую переменную t=(x-a)/σ. Следовательно, dx=σdt. Подставляем это в формулу. Значение функции Ф(t) обычно находят в составных таблицах, так как интеграл через элементарные функции не выражается. График: Случайная величина при нормальном распределении может находится в интервале (х1, х2). Вероятность этого равна Р(х1<x<х2)=Ф((х2-а)/σ)-Ф((х1-а)/σ)
Допустим, что произвольно из нормальных распределений выбираются группы по n значений СВ. Для каждой группы можно найти средние значения (х1, х2, хi). Они сами образуют нормальное распределение (только среднему значению будет соответствовать не вероятность, а относительная частота). МО будет соответствовать исходному, дисперсия и среднее квадратическое отклонение – отличаться в n и в √n соответственно. Dn=D/n и σn=σ/√n. На рисунке представлены графики нормальных распределений, полученных для групп со значением n, равными 1, 4, 16 и n→∞. При n=1 – исходное распределение, σn=σ. При n→∞ σn→0, фактически «группа СВ» - все исходное распределение, среднее значение выражается одним числом и соответствует МО, к которому сводится все распределение.
|
||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 249; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.255.247 (0.006 с.) |