Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Действие магнитного поля на заряды и токиСодержание книги
Поиск на нашем сайте
Сила Лоренца На частицу с зарядом q, движущуюся со скоростью в магнитном поле, индукция которого равна действует сила (2.1) Эта сила называется силой Лоренца. Модуль силы Лоренца равен: (2.2) где – угол между векторами и . Направление силы Лоренца зависит от знака заряда и всегда перпендикулярно плоскости, содержащей вектора и . Так как , работа силы Лоренца, равная скалярному произведению силы на элементарное перемещение, равна нулю [6]. Следовательно, кинетическая энергия и скорость частицы при ее движении в магнитном поле остаются постоянными по своей величине. Таким образом, сила Лоренца изменяет вектор скорости только по направлению, поэтому тангенциальное ускорение частицы [6] . Полное ускорение частицы равно нормальному ускорению , тогда по второму закону Ньютона , (2.3) где m – масса движущейся частицы. На характер движения частицы значительно влияет угол между ее скоростью и магнитной индукцией. Рассмотрим частный случай однородного магнитного поля. 1. Если заряженная частица влетает в однородное магнитное поле параллельно линиям магнитной индукции, т. е. , то . В этом случае частица не отклоняется от направления своего движения, двигаясь вдоль линий индукции магнитного поля. 2. Если заряженная частица влетает в однородное магнитное поле перпендикулярно линиям индукции (поперечное магнитное поле) (рис. 26), т. е. , то из (2.2) и (2.3) следует, что Таким образом, в однородном поперечном магнитном поле заряженная частица будет двигаться равномерно по окружности в плоскости, перпендикулярной вектору магнитной индукции (рис. 26). Радиус окружности R определяется из соотношения для центростремительного ускорения: , откуда следует, что . (2.4) 3. Выясним характер движения заряженной частицы в случае, когда угол отличен от 0 и . Разложим вектор на две составляющие: – перпендикулярную и – параллельную (рис. 27). Выражения для составляющих скоростей следующие: , . Из (2.1) и (2.2) следует, что сила Лоренца и лежит в плоскости, перпендикулярной к вектору магнитной индукции . Связанный с силой Лоренца вектор нормального ускорения также находится в этой плоскости. Таким образом, движение частицы можно представить как суперпозицию двух движений: перемещение вдоль направления с постоянной скоростью и равномерное движение по окружности со скоростью в плоскости, перпендикулярной к вектору (рис. 27). Радиус окружности, по которой происходит движение, определяется выражением (2.4) с заменой на : . (2.5) Время T, которое частица затрачивает на один оборот, найдем, разделив длину окружности на скорость частицы : . (2.6) Результирующее движение происходит по винтовой траектории, ось которой совпадает с направлением (рис. 27). Шаг винтовой траектории h равен произведению на время одного оборота: . (2.7) Направление закручивания винтовой траектории зависит от знака заряда частицы (рис. 26 и 27). Эффект Холла Пусть по проводнику прямоугольного поперечного сечения (b – ширина, а – толщина образца) течет постоянный электрический ток, I – сила тока. Если образец поместить в однородное магнитное поле, перпендикулярное двум его граням (на рис. 28 это передняя и задняя грани), то между двумя другими гранями возникает разность потенциалов. Это явление было обнаружено Холлом и называется эффектом Холла. Разность потенциалов между гранями называется эдс Холла . Эффект Холла объясняется следующим образом. В отсутствие магнитного поля в проводнике существует лишь продольное электрическое поле , обусловливающее ток. Эквипотенциальные поверхности этого поля перпендикулярны вектору . Разность потенциалов между симметрично расположенными точками на верхней и нижней гранях равна нулю.
В результате действия этой силы носители тока смещаются в поперечном направлении. На одной грани пластинки образуется избыток отрицательных зарядов, а на другой соответственно избыток положительных. Таким образом, появляется дополнительное поперечное электрическое поле, напряженность которого в итоге достигает такого значения, что электрическая сила, равная , уравновешивает силу Лоренца . В результате устанавливается равновесие, при котором . (2.8) Отсюда , (2.9) где – эдс Холла. Сила тока I связана со скоростью упорядоченного движения электронов соотношением [5]: (2.10) где S – площадь прямоугольного поперечного сечения образца шириной b и толщиной а; j – плотность тока; n – концентрация носителей тока. Таким образом, из (2.9) и (2.10) получаем значение эдс Холла . (2.11) В заключение заметим, что эффект Холла дает достаточно простой способ экспериментального определения концентрации носителей тока, а в случае полупроводников – типа их проводимости (по знаку эдс Холла). Если же концентрация носителей заряда известна, эффект Холла может быть использован для измерения магнитной индукции (датчики Холла).
|
||||||||
Последнее изменение этой страницы: 2016-08-10; просмотров: 327; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.255.103 (0.007 с.) |