Слесарный измерительный инструмент 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Слесарный измерительный инструмент



Техника безопасности

Правила техники безопасности предусматривает создание условий, которые обеспечивают безопасность труда при наибольшей его производительности.
Возникновение несчастных случаев в учебных мастерских возможно при недостаточно серьезном инструктаже обучающийся со стороны преподавателя, при недостаточным усвоении нужных производственных навыков, отсутствии достаточного опыта в обращении с инструментом и оборудованием у обучающего. Невнимательное отношение к выполнение указаний по технике безопасности совершенно недопустимо в учебных мастерских.

До начала работы:
1. Манжеты рукавов застегнуть на пуговицы или плотно; На занятиях в учебных мастерских следует быть в специальной одежде: рабочие комбинезоны или халаты; надевать их можно сверх обычной одежды
2. Подготовить рабочие места, удалить посторонние, не связанные с данной работой предметы с верстака и с окружающей площади, обеспечить нормальную освещенность рабочих мест.
3. Проверить исправность рабочих инструментов и приспособлений. Особо следует обратить внимание на следующее:

· Молотки, зубила и другой ударный инструмент не должен иметь забитых и деформированных рабочих поверхностей, что может привести к неправильному удару и травме рук;

· Напильники отвертки и другой подобный инструмент должен быть плотно насажен на деревянные ручки; при работе без ручек или с плохо насаженными ручками можно серьезно повредить руки;

· Тиски должны быть прочно закреплены на верстаках, а сами верстатки должны быть вполне исправными и устойчивыми;
Во время работы необходимо:

1. При обработке деталей в тисках сжимать их прочно.

2. Вов время установки и снятия деталей с тисков соблюдать осторожность, чтобы деталь не упала на ноги.

3. Удалять опилки с верстака только щеткой.

4. При рубке метала применять все меры к тому, чтобы отлетающие стружки не могли принести вред окружающим; для этого обязательно снабдить все верстаки предохранительными сетками или экранами.

5. Рабочие помещения следует хорошо вентилировать, не допускать скопления в воздухе пыли, которая интенсивно образуется во время работы.

6. Не допускать хранения в мастерских горючих веществ, которые могут понадобиться например, при отделке и окраске изделий. Горючие вещества должны храниться в закрытых металлических ящиках в специальных кладовых.

7. Нельзя оставлять в мастерских промасленных тряпок и одежды, так как они способны к самовозгоранию.

8. По окончанию работ каждый день обучающий должен тщательно убрать и очистить свои рабочие места, положить на место инструменты и детали. Неисправный инструмент нельзя хранить на рабочих местах, его нужно сдать в кладовую, сообщив об этом преподавателю.

 

Организация рабочего места

Рабочее место учащегося - это определенная часть площади учебной мастерской (лаборатории) с наиболее оптимально расположенными на нем оборудованием, инструментами, приспособлениями и другой оснасткой, необходимыми для выполнения учебно-производственных работ, соответствующих требованиям программы производственного обучения.

Обеспечение высокой производительности труда в значительной мере зависит от правильной организации рабочего места.

Организация рабочего места является важнейшим звеном организации труда. Правильный выбор и размещение оборудования, инструментов и материалов создают наиболее благоприятные условия работы.

Правильно организованным считается такое рабочее место, на котором при наименьшей затрате сил и средств благодаря рациональной и культурной организации труда достигаются наивысшая производительность и высокое качество продукции.

Правильной организации рабочего места можно достигнуть рационализацией трудовых приемов, механизацией процессов работы, устранением непроизводительных затрат рабочего времени, применением передовых методов труда.

Разметка

Разметкой называют процесс перенесения формы и размеров детали или ее части с чертежа на заготовку. Основная цель разметки — обозначить на заготовке места и границы обработки. Места обработки указываются центрами отверстий, получаемых последующим сверлением, или линиями гибки. Границами обработки отделяют тот материал, который должен быть удален, от того материала, который остается и образует деталь. Кроме того, разметку применяют в целях проверки размеров заготовки и ее пригодности для изготовления данной детали, а также для контроля правильности установки заготовки на станке.

Рубка металла

Рубкой называется операция, при которой с помощью зубила и слесарного молотка с заготовки удаляют слои металла или разрубают заготовку.

Физической основой рубки является действие клина, форму которого имеет рабочая (режущая) часть зубила. Рубка применяется в тех случаях, когда станочная обработка заготовок трудно выполнима или нерациональна.

С помощью рубки производится удаление (срубание) с заготовки неровностей металла, снятие твердой корки, окалины, острых кромок детали, вырубание пазов и канавок, разрубание листового металла на части.

Рубка производится, как правило, в тисках. Разрубание листового материала на части -может выполняться на плите.

Основным рабочим (режущим) инструментом при рубке является зубило, а ударным — молоток.

Слесарное зубило (11) изготовляется из инструментальной углеродистой стали. Оно состоит из трех частей: ударной, средней и рабочей. Ударная часть / выполняется суживающейся кверху, а вершина ее (боек) —закругленной; за среднюю часть 2 зубило держат во время рубки; рабочая (режущая) часть 3 имеет клиновидную форму. Угол заострения выбирается в зависимости от твердости обрабатываемого материала.

Для наиболее распространенных материалов рекомендуются следующие углы заострения: для твердых материалов (твердая сталь, чугун) — 70°; для материалов средней твердости (сталь) ~ 60°; для мягких материалов (медь, латунь) '— 45°; для алюминиевых сплавов — 35°.

Рабочая и ударная части зубила подвергаются термической обработке (закалке и отпуску). Степень закалки зубила можно определить, проведя напильником по закаленной части зубила: если напильник не снимает стружку, а скользит по поверхности, закалка выполнена хорошо.

Для вырубания узких пазов и канавок пользуются зубилом с узкой режущей кромкой — крейцмейселем. Такое зубило может применяться и для снятия широких слоев металла: сначала прорубают канавки узким зубилом, а оставшиеся выступы срубают широким зубилом.

Для вырубания профильных канавок (полукруглых, двугранных и др.) применяются специальные крейцмейсели— канавочники, отличающиеся только формой режущей кромки.

Слесарные молотки, используемые при рубке металлов бывают двух типов: с круглым и с квадратным бойком. Основной характеристикой молотка является его масса. Для рубки металлов применяют молотки массой от 400 до 600 г.

Рубка металлов — операция очень трудоемкая. Для облегчения труда и повышения его производительности используют механизированные инструменты. Среди них наибольшее распространение имеет пневматический рубильный молоток (12) Он приводится в действие сжатым воздухом, который подается по шлангу 3 от постоянной пневмосети или передвижного компрессора. При рубке металла нажимают курок 2, отжимающий золотник 4. Воздух, попадая через воздухопроводящие каналы, перемещает боек 6, который ударяет по хвостовищу зубила 7, вставленному в ствол 5. Во время рубки пневматический рубильный молоток держат обеими руками: правой — за рукоятку левой — за конец ствола, и направляют зубило по линии рубки.

Правка металла

Правка металла - операция, при помощи которой устраняют неровности, кривизну или другие недостатки формы заготовок/

Правка металла - это выправление металла действием давления на какую-либо его часть независимо от того, производится это давление прессом или ударами молотка (рихтовка).

Правят стальные листы из цветных металлов и их сплавов, стальные полосы, прутковый материал, трубы, проволоку, стальной квадрат, круг стальной, а также металлические сварные конструкции.

Различают два метода правки металлов: правку вручную, выполняемую с помощью молотка на стальных или чугунных правильных плитах, наковальнях и др., и правку машинную, выполняемую на правильных машинах.

Металл правят как в холодном, так и в нагретом состоянии.

Гибка металла - слесарная операция, при выполнении которой заготовка приобретает заданную форму. Заготовки можно изгибать под углом по радиусу и по фасонным кривым.

Гибку можно выполнять вручную и с помощью приспособлений, на гибочных прессах и станках, при этом гибка может быть произвольной (на глаз), по образцу, месту, разметке и по шаблон

 

 

Опиливание металла

 

Опиливанием называется слесарная операция, при которой снимают слои материала с поверхности заготовки с помощью напильника.

Напильник — это многолезвийный режущий инструмент, обеспечивающий сравнительно высокую точность и малую шероховатость обрабатываемой поверхности заготовки (детали).

Опиливанием придают детали требуемую форму и размеры, пригоняют детали друг к другу при сборке и выполняют другие работы. С помощью напильников обрабатывают плоскости, криволинейные поверхности, пазы, канавки, отверстия различной формы, поверхности, расположенные под разными углами, и т. д.

Припуски на опиливание оставляют небольшие — от 0,5 до 0,025 мм. Погрешность при обработке может быть от 0,2 до 0,05 мм и в отдельных случаях — до 0,005 мм.

Напильник () представляет собой стальной брусок определенного профиля и длины, на поверхности которого' имеется насечка (нарезка). Насечка образует мелкие и остро-заточенные зубья, имеющие в сечении форму клина. Для напильников с насеченным зубом угол заострения обычно равен 70°, передний угол (у) — до 16°, задний угол (а) — от 32 до 40°.

Напильники с одинарной насечкой снимают широкую стружку по длине всей насечки. Их применяют при опиливании мягких металлов.

Напильники с двойной насечкой используют при опиливании стали, чугуна и других твердых материалов, так как перекрестная насечка размельчает стружку, чем облегчает работу.

Рашпильную насечку получают вдавливанием металла специальными трехгранными зубилами. Полученные при образовании зубьев вместительные выемки способствуют лучшему размещению стружки. Рашпилями обрабатывают очень мягкие металлы и неметаллические материалы.

Дуговую насечку получают фрезерованием. Она имеет дугообразную форму и большие впадины между зубьями, что обеспечивает высокую производительность и хорошее качество обрабатываемых поверхностей.

Изготовляются напильники из стали У13 или У13А, а также из хромистой стали ШХ15 и 13Х. После насечки зубьев напильники подвергают термической обработке.

Ручки напильников изготовляют обычно из древесины (березы, клена, ясеня и других пород).

По назначению напильники делят на следующие группы: общего назначения, специального назначения, надфили, рашпили, машинные напильники. Для общеслесарных работ применяют напильники общего назначения.

По числу насечек на 1 см длины напильники подразделяют на 6 номеров.

Напильники с насечкой № 0 и 1 (драчевые) имеют наиболее крупные зубья и служат для грубого (чернового) опиливания с погрешностью 0,5—0,2 мм.

Напильники с насечкой № 2 и 3 (личные) служат для чистового опиливания деталей с погрешностью 0,15—0,02 мм.

Напильники с насечкой № 4 и 5 (бархатные) применяются для окончательной точной отделки изделий. Погрешность при обработке — 0,01—0,005 мм.

По длине напильники могут изготовляться от 100 до 400 мм. По форме поперечного сечения они подразделяются на плоские, квадратные, трехгранные, круглые, полукруглые, ромбические и ножовочные.

Для обработки мелких деталей служат малогабаритные напильники — надфили. Они изготовляются пяти номеров с числом насечек на 1 см длины от 20 до 112.

Обработку закаленной стали и твердых сплавов производят специальными надфилями, на стальном стержне которых закреплены зерна искусственного алмаза.

Улучшение условий и повышение производительности труда при опиливании металла достигается путем применения механизированных (электрических и пневматических) напильников.

Рассмотрим устройство универсальной шлифовальной машинки, которая широко используется в современном производстве. Универсальная шлифовальная машинка, работающая от асинхронного электродвигателя, имеет шпиндель, к которому крепится гибкий вал 2 с державкой (головкой) 3 для закрепления рабочего инструмента. Сменные прямые и угловые головки позволяют с помощью круглых фасонных напильников производить опиливание в труднодоступных местах и под разными углами.

Качество опиливания контролируют самыми различными инструментами. Правильность опиливаемой плоскости проверяют поверочной линейкой «на просвет». Если плоская поверхность должна быть опилена особенно точно, ее проверяют с помощью поверочной плиты «на краску». В том случае, если плоскость должна быть опилена под определенным углом к другой смежной плоскости, контроль осуществляется с помощью угольника или угломера. Для проверки параллельности двух плоскостей пользуются штангенциркулем или кронциркулем.

Расстояние между параллельными плоскостями в любом месте должно быть одинаковым.

Контроль криволинейных обрабатываемых поверхностей производят по линиям разметки или с помощью специальных шаблонов.

Резьба

№ п/п Тип резьбы Профиль резьбы (некоторые параметры) Условное изображение резьбы Стандарт Примеры обозначения Примеры обозначения резьбового соединения
             
  Метрическая
  Метрическая коническая
  Трубная цилиндрическая
  Трубная коническая
  Коническая дюймовая  
  Трапецеидальная
  Упорная
  Круглая
  Прямоугольная          

1.2.1. Метрическая резьба
Метрическая резьба (см. табл.1.2.1) является основным типом кре­пежной резьбы. Профиль резьбы установлен ГОСТ 9150–81 и представляет собой равносторонний треуголь­ник с углом профиля α = 60°. Профиль резьбы на стержне отличается от профиля резьбы в отверстии ве­личиной притупления его вершин и впадин. Основными параметрами метрической резьбы являются: номиналь­ный диаметр – d(D) и шаг резьбы – Р, устанавливае­мые ГОСТ 8724–81.
По ГОСТ 8724–81 каждому номинальному размеру резьбы с крупным шагом соответствует несколько мел­ких шагов. Резьбы с мелким шагом применяются в тонкостенных соединениях для увеличения их герметич­ности, для осуществления регулировки в приборах точ­ной механики и оптики, с целью увеличения сопро­тивляемости деталей самоотвинчиванию. В случае, если диаметры и шаги резьб не могут удовлетворить функци­ональным и конструктивным требованиям, введен СТ СЭВ 183–75 «Резьба метрическая для приборо­строения». Если одному диаметру соответствует несколь­ко значений шагов, то в первую очередь применяются большие шаги. Диаметры и шаги резьб, указанные в скобках, по возможности не применяются.
В случае применения конической метрической (см. табл.1.2.1) резьбы с конусностью 1:16 профиль резьбы, диаметры, шаги и основные размеры установлены ГОСТ 25229–82. При соединении наружной конической резьбы с внутренней цилиндрической по ГОСТ 9150–81 должно обеспечиваться ввинчивание наружной кониче­ской резьбы на глубину не менее 0,8.

1.2.2. Дюймовая резьба
В настоящее время не существует стандарт, регла­ментирующий основные размеры дюймовой резьбы. Ранее существовавший ОСТ НКТП 1260 отменен, и приме­нение дюймовой резьбы в новых разработках не допус­кается.
Дюймовая резьба применяется при ремонте оборудо­вания, поскольку в эксплуатации находятся детали с дюймовой резьбой. Основные параметры дюймовой резь­бы: наружный диаметр, выраженный в дюймах, и число шагов на дюйм длины нарезанной части детали.

1.2.3. Трубная цилиндрическая резьба
В соответствии с ГОСТ 6367–81 трубная цилиндри­ческая резьба имеет профиль дюймовой резьбы, т. е. равнобедренный треугольник с углом при вершине, рав­ным 55° (см. табл.1.2.1).
Резьба стандартизована для диаметров от 1/16 " до 6" при числе шагов z от 28 до 11. Номинальный размер резьбы условно отнесен к внутреннему диаметру трубы (к величине условного прохода). Так, резьба с номи­нальным диаметром 1 мм имеет диаметр условного прохода 25 мм, а наружный диаметр 33,249 мм.
Трубную резьбу применяют для соединения труб, а также тонкостенных деталей цилиндрической формы. Такого рода профиль (55°) рекомендуют при повышен­ных требованиях к плотности (непроницаемости) труб­ных соединений. Применяют трубную резьбу при соеди­нении цилиндрической резьбы муфты с конической резь­бой труб, так как в этом случае отпадает необходи­мость в различных уплотнениях.

1.2.4. Трубная коническая резьба
Параметры и размеры трубной конической резьбы определены ГОСТ 6211–81, в соответствии с которым профиль резьбы соответствует профилю дюймовой резь­бы (см. табл.1.2.1). Резьба стандартизована для диаметров от 1/16" до 6" (в основной плоскости размеры резьбы соответствуют размерам трубной цилиндрической резьбы).
Нарезаются резьбы на конусе с углом конусности j/2 = 1°47'24" (как и для метрической конической резь­бы), что соответствует конусности 1:16.
Применяется резьба для резьбовых соединений топ­ливных, масляных, водяных и воздушных трубопроводов машин и станков.

1.2.5. Трапецеидальная резьба
Трапецеидальная резьба имеет форму равнобокой трапеции с углом между боковыми сторонами, равным 30° (см. табл.1.2.1). Основные размеры диаметров и ша­гов трапецеидальной однозаходной резьбы для диамет­ров от 10 до 640 мм устанавливают ГОСТ 9481–81. Трапецеидальная резьба применяется для преобразова­ния вращательного движения в поступательное при зна­чительных нагрузках и может быть одно- и многозаходной (ГОСТ 24738–81 и 24739–81), а также правой и левой.

1.2.6. Упорная резьба
Упорная резьба, стандартизованная ГОСТ 24737–81, имеет профиль неравнобокой трапеции, одна из сторон которой наклонена к вертикали под углом 3°, т. е. рабо­чая сторона профиля, а другая – под углом 30° (см. табл.1.2.1). Форма профиля и значение диаметров шагов для упорной однозаходной резьбы устанавливает ГОСТ 10177–82. Резьба стандартизована для диаметром от 10 до 600 мм с шагом от 2 до 24 мм и применяется при больших односторонних усилиях, действующих в осевом направлении.
1.2.7. Круглая резьба
Круглая резьба стандартизована. Профиль круглой резьбы образован дугами, связанными между собой участками прямой линии. Угол между сторонами профиля α = 30° (см. табл.1.2.1). Резьба применяется огра­ниченно: для водопроводной арматуры, в отдельных слу­чаях для крюков подъемных кранов, а также в условиях воздействия агрессивной среды.

1.2.8. Прямоугольная резьба
Прямоугольная резьба (см. табл.1.2.1) не стандартизована, так как наряду с преимуществами, заключающимися в более высоком коэффициенте полезного действия, чем у трапецеидальной резьбы, она менее прочна и сложнее в производстве. Применяется при изготовлении винтов, домкратов и ходовых винтов.

1.3. Условное изображение резьбы. ГОСТ 2.311–68
Построение винтовой поверхности на чертеже – длительный и сложный процесс, поэтому на чертежах изделий резьба изображается условно, в соответствии с ГОСТ 2.311–68. Винтовую линию заменяют двумя линиями – сплошной основной и сплошной тонкой.
Резьбы подразделяются по расположению на поверх­ности детали на наружную и внутреннюю.

Клепка металла


Клепка металла – это процесс получения неразъемного соединения сравнительно тонких деталей: металлических листов или полосок, или листа железа с полосой ил металла.

Клепка производится при помощи заклепок, которые изготавливаются из мягкой стали и представляют собой цилиндрические стержни с двумя головками. Одна из этих головок называется закладной, а другая, расклепываемая на другом конце стержня, - замыкающей. Именно замыкающая головка обеспечивает скрепление деталей.

В зависимости от требований к поверхности, замыкающие головки заклепок могут быть полукруглыми, потайными, полупотайными или плоскими. Если обе головки заклепки располагаются над поверхностями склепанных деталей, клепка называется обыкновенной. Если же головки заклепки помещаются заподлицо с поверхностями склепанных деталей, клепку называют потайной.

Заклепочные соединения подразделяются на:

- прочные (рассчитаны только на восприятие силовых нагрузок);
- плотные (обеспечивают герметичность соединения в резервуарах с невысоким давлением);
- прочноплотные.

Для обеспечения герметичность соединения на поверхность стыка наносятся различные герметики или под стык подкладываются разные пластичные материалы. Для выполнения герметичных соединений используют заклепки с усиленными головками.

В зависимости от конструкции выделяют однорядные, двухрядные и многорядные заклепочные соединения с расположением заклепок параллельными рядами или шахматном порядке. В однорядных соединениях расстояние между центрами заклепок (шаг заклепочного шва) должно быть равно трем диаметрам заклепки, а в двухрядных соединениях – четырем диаметрам заклепки.

По количеству плоскостей среза такие соединения подразделяются на одно- и многосрезные. В качестве еще одного критерия для классификации выступает характер воздействия нагрузки на заклепочное соединение. Нагрузка может воздействовать на заклепочное соединение в продольном направлении, параллельном оси заклепок, и в поперечном, перпендикулярном оси заклепок.

По конструкции заклепочные соединения во многом схожи с паянными, клеевыми и сварными соединениями. Детали и листы, соединяемые заклепочным швом, могут располагаться внахлестку или встык с накладками.

Заклепки изготавливаются для разных способов установки. Односторонняя клепка выполняется с использованием множества видов заклепок, включая отрывные и взрывные. При обычной клепке наковаленка-поддержка может находиться с лицевой либо с тыльной стороны. Преимуществом последнего способа является возможность использования более легкой по весу наковаленки-поддержки.

Клепка бывает холодной, горячей и смешанной. При холодной клепке замыкающая головка заклепки высаживается в холодном состоянии. Холодную клепку используют, когда толщина стержня заклепки не превышает 8 мм.

Горячая клепка предусматривает предварительный разогрев стержня заклепки до температуры красного каления. Данный способ применяют при толщине стержня заклепки 8 мм и более.

Технология клепки

При ручной клепке для осаживания стержня заклепки используется кувалда или ручной клепальный пневматический молоток. Ручная клепка выполняется следующим образом. Клепальщик вставляет в буксу молотка наковаьню-поддержку, затем в правую руку берет рукоятку молотка, одновременно левой рукой поддерживая его ствол, направляемый на расклепываемую заклепку. Прижав молоток к заклепке, клепальщик пускает его в работу.

Как правило, в процессе клепки участвуют два человека – клепальщик и его подручный. Подручный молотком меньшей мощности клепает с внутренней стороны, подбивая заклепку, а клепальщик в это время клепает с наружной стороны, заклепку осаживая. Таким образом достигается уплотнение листов и, как результат, высокое качество клепки.

В последнее время для выполнения клепки вместо клепального молотка и наковальни-поддержки все чаще применяются клепальные прессы с ЧПУ, которые позволяют увеличить производительность и автоматизировать процесс клепки.

Раздел 3.

  • Безопасность труда и электробезопасность при выполнении практических работ в электромонтажной мастерской.
    Лабораторные стенды являются действующими электроустановками и при определенных условиях могут стать источником опасности поражения человека электрическим током. Поэтому при работа в лаборатории необходимо строго соблюдать установленные правила безопасности труда, электро и пожароопасности.
    Каждый обучающийся, находясь в мастерской, обязан быть дисциплинированным, внимательным, чувствовать ответственность при выполнении практических работ, начиная с подготовки к их выполнению и кончая оформлением отчета и сдачей зачета.
    Приступая к выполнению практический работ, обучающийся должны соблюдать следующие правила:
  • Находясь в мастерской и приступая к практиче­ской работе на стенде, студент должен помнить об опасности поражения электрическим током и быть осторожным.

  • На стенде можно размещать только предметы, необходимые для выполнения данной работы.

  • После изучения задания практической работы студенты должны разобраться в приведенной в ней электрической схеме, продумать последовательность выполнения работы, при необходимости уточнить у мастера возникшие неясные вопросы.
  • Тщательно осмотреть на стенде электрооборудование и приборы, убедиться в их исправности проверить состояние изоляции соединительных проводои Нельзя пользоваться проводами без наконечников. При неисправности электрооборудования обязательно обратиться к мастеру.

  • Прежде чем приступить к сборке схемы на стенде проверить, какими выключателями подается на схему напряжение, какой величины, а также убедиться, что контакты автоматов защиты разомкнуты и указатели положения элементов регулирования источников питания и автотрансформаторов расположены в позиции «Нуль». Все выключатели должны находиться в отключенном положении.

  • Отключенный конденсатор может сохранять опас­ный остаточный заряд, поэтому после отключения цепи его необходимо разрядить.

  • При сборке схемы необходимо избегать пересече­ния проводов, обеспечивать надежность контактов всех разъемных соединений. Неиспользованные провода не оставлять на стенде.

  • При сборке цепей силового понижающего транс­форматора помнить об опасности ошибочного соединения выводов обмотки низшего напряжения с проводами сети.

  • В собираемой схеме аппараты включать на напря­жение, соответствующее источнику питания, а электроиз­мерительные приборы


с пределами измерения — на ожи­даемые измеряемые величины.


  • Схему собирать строго в той последовательности, которая указана в задании практической работы.

  • Сборка схемы разрешается только в объеме вы­полняемой работы.

  • Включение собранной схемы и первое ее опробо­вание возможно только с разрешения мастера.

  • Запрещается размыкать цепь вторичной обмотки трансформатора тока, если его первичная обмотка вклю­чена в сеть.

  • Прежде чем разобрать электрическую схему или произвести любые изменения в ней, необходимо убедить­ся, что выключатели (автоматы) защиты, источники пи­тания отключены.
  • Замену и установку плавкой вставки предохрани­теля производить при отключенном автомате и только с разрешения мастера. Обнаружив любую неисправность в схеме до включения автоматов, немедленно сообщить мастеру о неисправности.

Виды электроремонта

Текущий ремонт (Т) – это ремонт, осуществляемый для восстановления работоспособности оборудования и состоящий в замене и (или) восстановлении его отдельных составных частей.

В зависимости от конструктивных особенностей оборудования, характера и объема проводимых работ, текущие ремонты могут подразделяться на первый текущий ремонт (Т1), второй текущий ремонт (Т2) и т.д. Перечень обязательных работ, подлежащих выполнению при текущем ремонте, должен быть определен в ремонтной документации электроцеха (подразделения).

При текущем ремонте, как правило, выполняются: – работы регламентированного ТО; – замена (или восстановление) отдельных узлов и деталей; – ремонт футеровок и противокоррозионных покрытий; – ревизия оборудования; – проверка на точность; – ревизия арматуры и другие работы, примерно такой же степени сложности.

Для проведения текущих ремонтов электрооборудования разрабатываются технологические карты.

Капитальный ремонт (К) – ремонт, выполняемый для обеспечения исправности и полного или близкого к полному восстановлению ресурса оборудования с заменой или восстановлением любых его частей, включая базовые (под базовой понимают основную часть оборудования, предназначенную для компоновки и установки на нее других составных частей). Послеремонтный ресурс оборудования должен составлять не менее 80% ресурса нового оборудования.

В объем капитального ремонта входят следующие работы: – замена или восстановление всех изношенных агрегатов, узлов и деталей; – полная или частичная замена изоляции, футеровки; – выверка и центровка оборудования; – послеремонтные испытания.

Для выполнения капитального ремонта на предприятии должны иметься ТУ на каждое наименование ремонтируемого оборудования.

 

Удаление обмотки.

Разборка электрических машин на составные части не представляет затруднений. Необходимо только максимально механизировать выполнение отдельных операций, применяя электро- или гидрогайковерты, съемники, тали и т. п., а также соблюдать осторожность при выемке роторов крупных машин, чтобы не повредить ротором железо пакетов статора или его обмотку.
Наиболее трудоемкая операция при разборке — удаление старой обмотки. Это делают следующими методами: механическим, термомеханическим, термохимическим, химическим и электромагнитным.
Сущность механического метода заключается в том, что корпус электрической машины с пакетами стали статора и обмоткой устанавливают на токарный или фрезерный станок и резцом или
фрезой обрезают одну из лобовых частей обмотки. Затем при помощи электро- или гидропривода удаляют (вытягивают) из пазов оставшуюся часть обмотки (крюком за оставшуюся лобовую часть ее). Однако при таком удалении обмотки в пазах есть остатки изоляции, и требуются дополнительные затраты на их удаление.
2. При термомеханическом методе удаления старой обмотки электрическую машину со срезанной лобовой частью обмотки помещают в обжиговую печь при температуре 300...350°С и выдерживают там несколько часов. После этого оставшаяся часть обмотки легко удаляется. Часто машину помещают в печь со всей обмоткой (ни одна из лобовых частей обмотки не срезана), но в этом случае после обжига обмотку из пазов удаляют только вручную.
Равномерное тепловое поле в обжиговой печи создать трудно. Нередко в печи происходит возгорание изоляции обмоток, приводящее к резкому увеличению температуры в печи, особенно в некоторых ее зонах. При повышении температуры выше допустимой могут покоробиться корпуса машин, особенно это относится к алюминиевым корпусам. Поэтому машины с алюминиевыми корпусами обжигать не рекомендуется. Некоторые предприятия исследуют распределение температур внутри печи при ее работе и определяют зоны, в которых можно расположить электрические машины с алюминиевыми корпусами.
При обжиге в печи происходит отжиг листов стали статора, заметно уменьшаются удельные потери в стали и повышается к. п. д; машины. Но при этом выгорают лаковые пленки между пакетом стали и корпусом и между отдельными листами стали. Последнее приводит к тому, что после 2...3 обжигов нарушается тугая посадка между пакетом и корпусом, пакет начинает проворачиваться в корпусе машины, ослабляется прессовка пакета. Поэтому прогрессивным можно признать обжиг изоляции обмоток машин в расплавах солей (каустика или щелочи).
Обжиг в расплавах солей проводят при температуре 300°С (573К) при алюминиевых корпусах и 480°С (753 К) при чугунных в течение нескольких минут. Полное отсутствие доступа воздуха к объекту обжига, а также возможность регулирования температуры в необходимых пределах позволяют применять этот способ обжига и для машин с алюминиевыми корпусами. Коробление последних исключается полностью.
При термохимическом методе удаления обмотки электрическую машину, подготовленную к обжигу (одна из лобовых частей обмотки срезана), опускают в емкость с раствором каустической соды или щелочи. Машина находится в растворе при температуре 80...100°С в течение 8... 10 ч, после чего ее обмотку можно легко удалить из пазов пакетов статора. При таком методе никакого коробления корпусов произойти не может. Этот способ особенно оправдывает себя при масляно-битумной изоляции обмоток.
При химическом методе электрическую машину с обмоткой помещают в емкость с моющей жидкостью типа МЖ-70. Эта жидкость летучая и токсичная, поэтому, работая с ней, необходимо соблюдать правила техники безопасности. Технология удаления обмоток такова: загрузка емкости ремонтируемыми машинами, герметизация емкости, заполнение ее жидкостью, процесс реакции, на который обычно расходуется ночное нерабочее время, удаление жидкости, продувка емкости, освобожденной от жидкости, чистым воздухом, разгерметизация и открытие емкости, выемка электрических машин и удаление обмотки из пазов статора.



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 130; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.189.85 (0.071 с.)