![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Соединение потребителей треугольникомСодержание книги
Поиск на нашем сайте
В общем случае несимметричной нагрузки активная мощность трехфазного приемника равна сумме активных мощностей отдельных фаз:P = Pab + Pbc + Pca,где Pab = Uab Iab cos φab; Pbc = Ubc Ibc cos φbc; Pca = Uca Ica cos φca; Uab, Ubc, Uca; Iab, Ibc, Ica – фазные напряжения и токи; φab, φbc, φca – углы сдвига фаз между напряжением и током. Реактивная мощность соответственно равна алгебраической сумме реактивных мощностей отдельных фаз:Q = Qab + Qbc + Qca, Где Qab = Uab Iab sin φab; Qbc = Ubc Ibc sin φbc; Qca = Uca Ica sin φca. Полная мощность отдельных фаз: Sab = Uab Iab; Sbc = Ubc Ibc; Sca = Uca Ica. Полная мощность трехфазного приемника: При симметричной системе напряжений (Uab = Ubc = Uca = UФ) и симметричной нагрузке (Iab = Ibc = Ica = IФ; φab = φbc = φca = φ) фазные мощности равны Pab = Pbc = Pca = PФ = UФ IФ cos φ; Qab = Qbc = Qca = QФ = UФ IФ sin φ. Активная мощность симметричного трехфазного приемника P = 3 PФ = 3 UФ IФ cos φ. Реактивная мощность: Q = 3 QФ = 3 UФ IФ sin φ. Полная мощность: S = 3 SФ = 3 UФ IФ. Так как за номинальные величины обычно принимают линейные напряжения и токи, то мощности удобней выражать через линейные величины UЛ и IЛ. При соединении фаз симметричного приемника звездой UФ = UЛ / Соответственно реактивная мощность: Q = и полная мощность: S = При этом надо помнить, что угол φ является углом сдвига фаз между фазными напряжением и током, и, что при неизмененном линейном напряжении, переключая приемник со звезды в треугольник его мощность увеличивается в три раза: Δ P = Υ 3P. 44. Электропроводность полупроводников
Итак, электропроводность в полупроводниках обусловливается электронами. Она называется электронной электропроводностью или электропроводностью n-типа1. В данном случае электроны, создающие ток, принадлежат атомам самого полупроводника, а не атомам примеси, поэтому такую электропроводность называют собственной. У атома, электрон которого перешел в зону проводимости, образовался, таким образом, недостаток одного электрона. Такие атомы превращаются в положительные ионы, которые, однако, закреплены на месте и не в состоянии двигаться и принимать участие в создании тока. Место отсутствующего электрона может занять электрон с соседнего атома, у которого такого недостатка нет. В результате этого перехода появится у второго атома недостаток в электроне. Подобный процесс может иметь место одновременно у многих атомов. Отсутствие в атоме электрона в результате перехода его в зону проводимости получило название дырки ('в атоме). Электрический же ток, образующийся при движении дырок, называют дырочным током. Электропроводность, обусловленная этим дырочным током, называется дырочной электропроводностью или электропроводностью р-типа. Полупроводники, не содержащие донорные и акцепторные примеси, называют собственными полупроводниками, а содержащие - примесными. Итак, движение электронов (в одном направлении) и дырок атомов (в обратном направлении) самого полупроводника создает собственную электропроводность, которая с повышением температуры возрастает. Понижение же температуры будет уменьшать собственную электропроводность полупроводника, так как будет уменьшаться число электронов, переходящих в зону проводимости. Поэтому полупроводники при охлаждении приближаются к диэлектрикам по величине их сопротивления.
В полупроводниках и диэлектриках при температуре 00К все электроны находятся в валентной зоне, а зона проводимости абсолютно свободна. Электроны полностью заполненной зоны не могут принимать участия в создании электрического тока. Для появления электропроводности необходимо часть электронов перевести из валентной зоны в зону проводимости. Энергии электрического поля недостаточно для осуществления этого перехода, требуется более сильное энергетическое воздействие, например, нагревание твердого тела. Чем выше температура и меньше запрещенная зона, тем выше интенсивность межзонных переходов. У диэлектриков запрещенная зона может быть настолько велика, что электронная электропроводность не играет определяющей роли. Если каждый атом имеет, например, 4 валентных электрона, являющихся общими для 4 ближайших атомов (конфигурация валентных связей), то такое твердое тело является полупроводником. Например, в германии и кремнии, являющихся четырехвалентными элементами, на наружной оболочке имеется по четыре ковалентные связи с четырьмя ближайшими, окружающими его атомами. Электронно-дырочный переход Электронно-дырочный переход (или n – p -переход) – это область контакта двух полупроводников с разными типами проводимости.
|
||||||
Последнее изменение этой страницы: 2016-08-10; просмотров: 286; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.200.146 (0.009 с.) |