Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Морфологические типы коллекторовСодержание книги Поиск на нашем сайте
По условиям фильтрации пластовых флюидов коллекторы делятся на простые и сложные (смешанные). К простым коллекторам относятся поровые и чисто трещинные, а к смешанным - трещинно-поровые и порово-трещинные. Чисто трещинные и смешанные (трещинно-поровые и порово-трещинные) коллекторы часто называют просто трещинными, поскольку фильтрация в них обусловлена, главным образом, наличием трещин. По условиям аккумуляции флюидов, которые определяются морфологией пустотного пространства коллекторы также делятся на простые и сложные (смешанные). В простых коллекторах пустотное пространство представлено следующими видами: порами, кавернами, карстовыми полостями и трещинами. Поровые коллекторы обычно связаны с терригенными породами – песчаниками и алевролитами и реже - с органогенными карбонатными породами. Остальные виды пустотного пространства - каверны, карстовые полости и трещины в основным вязаны с карбонатными коллекторами. Чисто трещинные коллекторы встречаются редко. Образуются они за счет вторичной трещиноватости в плотных жестких и хрупких породах, минеральная часть которых практически лишена пористости. Смешанное пустотное пространство характерно для карбонатных пород, где оно представлено сочетанием видов пустот, которые образуют следующие типы пустотного пространства: порово-трещинное, порово-каверновое, карстово-каверновое, порово-каверново-карстовое, порово-стилолитовое. Трещинно-поровые коллекторы преимущественно связаны с карбонатными породами, пустотное пространство которых образовано, главным образом, межзерновыми порами и кавернами. При характеристике типа коллектора основной вид пустот ставится в названии на последнее место. По величине эффективной пористости коллекторы делятся на классы, как в зависимости от типа горных пород, так и не зависимо от них. П.П. Авдусин и М.А. Цветкова (1943) разделили терригенные коллекторы на пять классов (от А до Е, ёмкость – от большой до малой). Практическое значение имеют коллекторы первых четырех классов. По величине коэффициента проницаемости коллекторы также делятся на классы, как в зависимости от типа горных пород или типа фильтрующих пустот, так и не зависимо от них. Например, Г.И. Теодорович, не зависимо от типа фильтрующих пустот разделил все породы-коллекторы по величине коэффициента проницаемости на пять классов (от I до V). В классификации А.А. Ханина выделено шесть классов песчано-алевритовых коллекторов по их гранулометрическому составу, величине эффективной пористости и проницаемости. В классификации И.А. Конюхова выделено три группы карбонатных коллекторов по качественной оценке их емкости, и восемь классов по количественным значениям проницаемости и эффективной пористости. По вещественному (литологическому) составу горных пород выделяются две основные группы коллекторов: терригенная и карбонатная. Кроме них существуют коллекторы, связанные с глинистыми, вулканогенными, вулканогенно-осадочными, метаморфическими и магматическими породами, а также породами кор выветривания. -Терригенные или песчано-алевритовые коллекторы. Коллекторы этого типа занимают основное место среди пород-коллекторов С ними связана весьма значительная часть запасов нефти и газа. ЁФС терригенных коллекторов определяются в основном структурой порового пространства, поэтому их часто называют гранулярными или межгранулярными. -Карбонатные коллекторы. Они занимают существенное место среди пород-коллекторов. Причём значительная часть мировых запасов нефти и газа связана с трещинно-поровыми типами, небольшая с порово-трещинными и ничтожная с чисто трещинными. Карбонатные породы являются полигенетической группой и по генезису первичных элементов могут быть хемогенными, органогенными, обломочными и смешанными. Часто в них присутствует терригенный материал, а иногда - пирокластический материал и аутигенные примеси в виде сульфатов, силикатов и других минералов. -Глинистые коллекторы. Наиболее широко глинистые коллекторы распространены в центральной и южной части Западной Сибири, где они называются «баженитами. Там, на границе нижнего мела и верхней юры, в составе региональной покрышки развита баженовская свита, которая является промышленно нефтеносной. У глинистых аргиллитоподобных коллекторов баженовского типа есть общее характерное свойство – высокое, в среднем 22,5 %, содержание органического вещества (ОВ) сапропелевого типа, наличие свободной кремнекислоты, в среднем 29,5 % и проявление сингенетичной нефтеносности. Глинистые коллекторы Северного Кавказа – хадумиты, являются двухкомпонетными. Они состоят из глинистых минералов и кремнезема. Название дано по хадумской свите майкопской серии пород. -Коллекторы магматических, метаморфических пород и их кор выветривания. Данные типы коллекторов связаны с фундаментом осадочных бассейнов (ОБ). В настоящее время на Земле известно порядка 450 промышленных месторождений нефти и газа, часть которых по своим запасам относится к крупным и уникальным. Большинство залежей - 40 %, и более 75 % запасов УВ, находящихся в фундаменте связано с кислыми породами: гранитами и гранитоидами. Характерной особенностью нефтегазоносносности фундамента является то, что коллекторы и флюидоупоры в нём могут быть представлены одной и той же породой. Пустотное пространство пород-коллекторов имеет каверново-трещинный и трещинный типы, которые связаны с рядом вторичных процессов. Часто кора выветривания и базальный горизонт осадочного чехла образуют единый природный резервуар. Например, в Ростовской области Азовское газовое месторождение связано с нижнемеловыми песчаниками и подстилаемой корой выветривания гнейсов докембрийского возраста. 6. По распространенности выделяют породы-коллекторы, которые имеют региональное, зональное и локальное распространение. 7. По толщине и выдержанности литологического состава выделяют коллекторы, характеризующиеся выдержанностью или невыдержанностью толщин, литологического состава и фильтрационно-емкостных свойств.
Экзаменационный билет №___15__ 1.Главные гомологические ряды и количество индивидуальных углеводородов, идентифицированных в нефтях 2. Время, продолжительность и скорость формирования залежей нефти и газа Методы определения времени формирования залежей нефти и газа 3.Типы флюидоупоров Беларуси
2. Время, продолжительность и скорость формирования залежей нефти и газа Методы определения времени формирования залежей нефти и газа Изучение вопросов времени, продолжительности и скорость формирования залежей нефти и газа имеет большое практическое и научное значение. Под временем формирования залежей понимается период с момента поступления первых порций УВ в ловушку до её полного заполнения. За начало образования залежей можно принять время возникновения ловушек, а установление времени конца формирования залежей вызывает большие трудности. В случае древнего заложения ловушки и её конседиментационного развития период существования выявленной залежи может оказаться весьма продолжительным. Кроме того, многие залежи испытали неоднократные поднятия и погружения во время которых происходило их переформирование. При установлении времени начала и конца формирования залежей можно определить продолжительность их формирования. При знании объёмов и продолжительности формирования залежей можно определить скорость, или интенсивность, их формирования. Она определяется как отношение геологических запасов нефти или газа в залежи к продолжительности их формирования, и выражается соответственно в тоннах или кубических метрах в год. Относительно скорости и продолжительности процесса формирования залежей нефти и газа в настоящее время существует три представления: 1) процесс формирования залежей является очень длительным и многоэтапным; 2) формирование залежей происходит достаточно быстро; 3) залежи формируются с высокими скоростями, сопоставимыми со скоростями отбора УВ при их добычи, или они формируются в течение исторического времени. Первое представление появилось давно и связано с представлениями об очень низкой скорости генерации и миграции УВ. В настоящее время его развивают В.И. Ларин и И.С. Гутман. Они считают, что залежи нефти и газа формируются в течение отрезка времени, достигающего 100 млн. лет и более. При этом основным фактором формирования залежей является вертикальный диффузионный поток УВ. Второе представление основано на расчётах, которые показывают, что процессы генерации и миграции нефти и газа могут протекать относительно быстро. Оно поддерживается большинством геологов нефтяников, придерживающихся органической теории происхождения УВ. Расчеты, проведенные на примерах нефтяных залежей районов кайнозойской и современной складчатости (Калифорнии, побережья Мексиканского залива, Апшеронского полуострова, Румынии, Бирмы и Индонезии) показали, что продолжительность их формирования составляет от 78 тыс. до 3 млн. лет. Время формирования залежей в условиях данных районов определяется с наименьшими погрешностями, поскольку ловушки нефти и газа имеют молодой возраст. Третье представление развивается как в рамках органической концепции, так и в рамках неорганической концепции происхождений нефти и газа. Процесс нефтегазонакопления здесь представляется геологически мгновенным, способным восполнять потери УВ из залежей в процессе их разработки. Данные представления основаны на фактах чрезвычайно большой скорости генерации УВ как за счёт органических, так и неорганических источников, и большой роли флюидодинамических процессов в вертикальной миграции УВ. Экзаменационный билет №___16__ 1.Формы и типы рассеянного органического вещества 2.Изменение коллекторских свойств пород с глубиной 3. Принцип дифференциального улавливания нефти и газа
|
||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 602; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.40.90 (0.007 с.) |