Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Качественный элементный анализ органических соединенийСодержание книги
Поиск на нашем сайте
Принадлежность органических веществ к определенным классам соединений и их строение можно установить с помощью элементного и функционального анализа. Качественный элементный анализ позволяет определить, из каких элементов построены молекулы вещества, и установить его простейшую формулу. Наиболее часто в состав органических веществ, помимо углерода и водорода, входят кислород, сера, азот и галогены. При выполнении элементного анализа органическое соединение разлагают таким образом, чтобы исследуемые элементы перешли в состав неорганических веществ. При этом углерод переходит в оксид углерода (IV), водород — в воду, азот — в цианид-ион, аммиак или молекулярный азот, сера — в сульфид. Дальнейшее определение элемента проводят обычными методами аналитической химии.
Опыт 1. Обнаружение углерода пробой на обугливание Реактивы и оборудование: сахар (или мука, крахмал), бумага, 1%-ный раствор серной кислоты, концентрированная серная кислота; фарфоровые чашки, шпатели, держатели, цилиндры на 50 мл, стеклянные палочки.
Первой пробой на обнаружение углерода в неизвестном органическом веществе является его прокаливание или обугливание под действием водоотнимающих веществ, например концентрированной серной кислоты. В фарфоровую чашку (тигель) насыпают немного муки, крахмала или сахара (0,1—1,2 г), закрепляют ее в держателе. Осторожно нагревают чашку в пламени горелки и прокаливают исследуемое вещество до обугливания (почернения). На листочке фильтровальной бумаги (целлюлозе) при помощи стеклянной палочки делают надпись 1%-ным раствором серной кислоты. После высыхания такая надпись будет невидна. После нагревания бумаги над пламенем газовой горелки или над электрической плиткой надпись, сделанная серной кислотой, проявляется в виде черных обугленных полос. В фарфоровой ступке растирают 25 г быстрорастворимого сахара и добавляют 3 мл воды. Образовавшуюся смесь переносят в стеклянный цилиндр вместимостью 50 мл и постепенно, непрерывно перемешивая стеклянной палочкой, добавляют 12,5 мл концентрированной серной кислоты. С началом обугливания стеклянную палочку приподнимают. Смесь вспучивается, и черная пористая масса поднимается по палочке (демонстрационный опыт).
Опыт 2. Обнаружение углерода и водорода окислением вещества оксидом меди (II) Реактивы и оборудование: сахар (предварительно просушенный), оксид меди (II) — порошок, известковая (или баритовая) вода — насыщенный раствор гидроксида кальция или бария, безводный сульфат меди(II) — свежепрокаленный; изогнутые газоотводные трубки с пробками для пробирок, вата.
Некоторые органические вещества не обугливаются обычным путем. Например, спирты и эфиры испаряются раньше, чем успевают обуглиться; мочевина и фталевый ангидрид возгоняются до обугливания. В таких веществах обнаружить углерод можно при прокаливании их в присутствии оксида меди (II). Органическое вещество окисляется оксидом меди. При этом углерод превращается в углекислый газ, а водород — в воду. В сухую пробирку насыпают порошок оксида меди (II) (около1 г) и 0,1—0,2 г сахарозы. Избыток оксида меди необходим для того, чтобы органическое вещество полностью было окислено. Смесь перемешивают и сверху добавляют дополнительно около 0,5—1 г оксида меди. В верхнюю часть пробирки помещают маленький комочек ваты, на который насыпают немного обезвоженного сульфата меди (II). Пробирку закрывают пробкой с газоотводной трубкой (рис. 1). Пробирку закрепляют в лапке штатива с небольшим наклоном в сторону пробки. Свободный конец газоотводной трубки опускают в пробирку с известковой (баритовой) водой. Сначала прогревают всю пробирку, а потом сильно нагревают часть пробирки с реакционной смесью. Выделяющиеся в процессе прокаливания пузырьки газа (СО2) вызывают помутнение известковой воды вследствие образования белого осадка СаСО3:
С02 + Са(ОН)2 ® СаС03 ¯ + Н2О Рис. 1. Прибор для одновременного обнаружения углерода и водорода в органическом веществе: 1 — сухая пробирка со смесью сахарозы и оксида меди (II); 2 — вата; 3 — безводный сульфат меди; 4 — пробирка с известковой водой Выделяющаяся в процессе реакции вода окрашивает сульфат меди (II) в синий цвет в результате образования кристаллогидрата CuSO4 • 5Н2О.
Опыт 3. Обнаружение азота сплавлением вещества с металлическим натрием (тяга, защитные очки)
Реактивы и оборудование: мочевина, металлический натрий, 5%-ный раствор сульфата железа (II), 1-%-ный раствор хлорида железа (III), 10%-ная соляная кислота, этиловый спирт, лакмусовая бумага; пинцеты, скальпели, фильтровальная бумага, пипетки.
Метод основан на том, что при сплавлении органического вещества, содержащего азот, с металлическим натрием происходит разложение вещества с образованием цианида натрия. Для обнаружения цианида натрия используют реакцию получения берлинской лазури. Свое название цианид натрия получил от латинского названия cyanus — синий, т.е. способный давать синюю окраску. В сухую пробирку вносят несколько кристаллов мочевины H2N—СО—NH2 и небольшой кусочек металлического натрия (с небольшую горошину), предварительно очищенного от корки и не содержащего остатков керосина. Вместо мочевины можно взять другое органическое вещество, содержащее азот, например анилин, ацетамид, яичный белок и др. Смесь осторожно нагревают в пламени горелки (тяга, защитные очки). Разложение вещества сопровождается вспышкой. После вспышки пробирку нагревают до красного каления еще 1—2 мин. Необходимо отметить, что натрий должен плавиться вместе с мочевиной, иначе не будет образовываться цианид натрия, и опыт окажется неудачным. После охлаждения пробирки на воздухе в нее добавляют 3—5 капель этилового спирта для удаления остатков металлического натрия:
2С2Н5ОН + 2Na → 2C2H5ONa + Н2 Затем в пробирку приливают 1,5 мл дистиллированной воды и нагревают ее до полного растворения плава при помешивании стеклянной палочкой. На этом этапе цианид натрия переходит в раствор, который затем переливают в другую пробирку (при необходимости его фильтруют через маленький складчатый фильтр). Если органическое вещество разложилось частично, то жидкость будет окрашена в бурый или черный цвет. В этом случае плавление исследуемого вещества с металлическим натрием необходимо повторить. К фильтрату добавляют 2—3 капли 5%-ного раствора сульфата железа (II) и 1 каплю 1%-ного раствора хлорида железа (III) и наблюдают выпадение осадков гидроксида железа (II) грязно-зеленого цвета и гидроксида железа (III) бурого цвета в щелочной среде:
FeSO4 + 2NaOH ® Fe(OH)2 ¯+ Na2SO4 FeCl3 + 3NaOH ® Fe(OH)3 ¯ + 3NaCl В случае избытка цианида натрия в растворе будет образовываться гексацианоферрат (II) натрия:
Fe(OH)2 + 2NaCN ® Fe(CN)2 + 2NaOH Fe(CN)2 + 4NaCN ® Na4[Fe(CN)6] После перемешивания содержимого пробирки его подкисляют 10%-ной соляной кислотой (несколько капель). Смесь осадков гидроксидов железа (II) и (III) растворяется, и появляется синяя окраска (берлинская лазурь), а затем выпадает синий осадок. Берлинская лазурь образуется при взаимодействии гексацианоферрата (II) натрия с ионами трехвалентного железа, которые появляются только в кислой среде. В щелочной среде обычно содержится недиссоциированный гидроксид железа (III):
Fe(OH)3 + ЗНС1 ® FеС13 + ЗН2О 4FeCl3 + 3Na4[Fe(CN)6] ® Fe4[Fe(CN)6]3 + 12NaCl Если берлинской лазури образуется очень мало, то раствор окрашивается в зеленый цвет, переходящий в синий при длительном стоянии.
Опыт 4. Определение серы сплавлением органического вещества с металлическим натрием (тяга, защитные очки)
Реактивы и оборудование: тиомочевина, металлический натрий, 2%-ный раствор ацетата свинца, 2%-ный раствор нитропруссида натрия (свежеприготовленный), 10%-ная соляная кислота, уксусная кислота, этиловый спирт; скальпели, пинцеты, пипетки, стеклянные палочки, фильтровальная бумага.
Принцип метода состоит в том, что при сплавлении металлического натрия с изучаемым органическим веществом происходит его разложение, и выделяющаяся сера образует с натрием соответствующий сульфид. Далее сульфид-ион S2- обнаруживают обычными качественными реакциями. В сухую пробирку помещают несколько крупинок тиомочевины (или сульфаниловой кислоты, белого стрептоцида, сухого белка и т.д.) и кусочек металлического натрия с блестящей поверхностью размером с небольшую горошину. Далее проводят сплавление (тяга, защитные очки) так, как было описано в опыте 3 (определение азота). Полученный раствор, содержащий сульфид натрия, разливают в три пробирки. В первую пробирку добавляют несколько капель уксусной кислоты, а затем приливают 0,5 мл 2%-ного раствора ацетата свинца. Образуется черный осадок сульфида свинца. Если образуется черный или бурый коллоидный раствор, то его нагревают, и образование осадка ускоряется:
Na2S + Pb(CH3COO)2 ® PbS ¯ + 2CH3COONa Во вторую пробирку приливают 0,5 мл 2%-ного раствора нитропруссида натрия Na2[Fe(CN)5NO]. Появляется интенсивное красно-фиолетовое окрашивание раствора, которое постепенно переходит в бурое:
Na2S + Na2[Fe(CN)5NO] ® Na4[Fe(CN)5NOS] Эта реакция значительно чувствительнее реакции с ацетатом свинца. В третью пробирку с раствором добавляют 10%-ную соляную кислоту, при этом появляется запах сероводорода: Na2S + 2НС1 ® 2NaCl + H2S
Опыт 5. Определение галогенов в органических веществах Реактивы и оборудование: хлороформ, дистиллированная вода, соляная кислота, этиловый спирт, металлический натрий, 1%-ный раствор нитрата серебра, концентрированная азотная кислота, синяя лакмусовая бумага; медная проволока с петлей на конце, вставленная другим концом в корковую пробку, прямые газоотводные трубки, стаканы на 150 мл, пинцеты, скальпели, фильтровальная бумага.
5.1. Реакция Бейлъштейна на галогены. При прокаливании галогеносодержащего органического вещества с оксидом меди (II) происходит его окисление, причем галогены (кроме фтора) образуют с медью летучие галогениды, окрашивающие пламя в ярко-зеленый цвет. Петлю медной проволоки прокаливают в пламени горелки до прекращения окрашивания пламени и образования на поверхности черного налета оксида меди (II):
2Сu + О2 ® 2СuО Остывшую петлю смачивают хлороформом или тетрахлоридом углерода, а затем снова вносят в пламя газовой горелки. Сначала пламя становится светящимся благодаря сгоранию углерода, а потом окрашивается в ярко-зеленый цвет:
2СНС13 + 5СuО ® СuС12 + 4СuС1 + 2СО2 + Н2О Для очистки проволоку смачивают соляной кислотой и прокаливают. 5.2. Метод Степанова (определение галогенов действием металлического натрия на спиртовой раствор органического вещества). Для определения галогена в органическом веществе его восстанавливают водородом в момент выделения, при этом галоген отщепляется в виде аниона, который можно открыть качественной реакцией с нитратом серебра. В пробирку наливают 2—3 мл этилового спирта и добавляют 1 каплю хлороформа или другого галогеносодержащего органического вещества (тетрахлорид углерода, йодоформ и др.). В полученную смесь вносят кусочек металлического натрия величиной с небольшую горошину. Начинается энергичная реакция, сопровождающаяся выделением водорода, причем часть водорода в момент выделения участвует в восстановлении хлороформа:
2С2Н5ОН + 2Na ® 2C2H5ONa + 2[Н] СНС13 + 6[Н] ® ЗНС1 + СН4 НС1 + C2H5ONa ® NaCl + С2Н5ОН Пробирку закрывают пробкой с прямой газоотводной трубкой и поджигают выделяющийся водород. После окончания выделения водорода и полного растворения натрия к реакционной смеси добавляют 2 мл дистиллированной воды. Избыток алкоголята натрия реагирует с водой с образованием гидроксида натрия:
C2H5ONa + Н2О ® С2Н5ОН + NaOH В воде также растворяется белый осадок хлорида натрия, плохо растворимый в этиловом спирте. Необходимо отметить, что в присутствии щелочи нельзя обнаружить хлорид-ион реакцией с нитратом серебра, так как при его добавлении будет образовываться бурый осадок гидроксида серебра. Поэтому полученный щелочной раствор подкисляют несколькими каплями концентрированной азотной кислоты (контроль по лакмусовой бумаге) и к кислому раствору добавляют несколько капель 1%-ного раствора нитрата серебра. Наблюдают выпадение белого творожистого осадка хлорида серебра: NaCl + AgN03 ® NaNO3 + AgCl ¯ Необходимо помнить, что при выполнении опыта нельзя брать избыток хлороформа, так как хлороформ, не прореагировавший с водородом, при разбавлении реакционной смеси водой дает стойкую белую эмульсию, которая в дальнейшем будет маскировать появление белого осадка при проведении качественной реакции с нитратом серебра.
|
||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 3481; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.234.182 (0.009 с.) |