Нагрузки и воздействия на гидротехнические сооружения. Определение их нормативных и расчетных значений. Расчетные сочетания нагрузок и воздействий. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Нагрузки и воздействия на гидротехнические сооружения. Определение их нормативных и расчетных значений. Расчетные сочетания нагрузок и воздействий.



Требования к размерам водопропускных сооружений.

Число и размеры водосбросных сооружений определяют исходя из условий пропуска расхода воды основного расчетного случая. Ширина (пролет) и высота прямоугольных отверстий водопропускных сооружений, перекрываемых затвором, стандартизованы и выбираются из ряда значений. За ширину отверстия принимают размер в свету между боковыми вертикальными гранями сооружения, ограничивающими водопропускное отверстие. Для поверхностных отверстий высота — это расстояние от верхней грани порога до верхней кромки обшивки затвора, а для глубинных — расстояние от дна до потолка отверстий.

Размеры и число отверстий поверхностных и глубинных водосбросных устройств принимают на основании сравнения технико-экономических показателей различных вариантов их выбора в зависимости от сбросного расхода воды основного расчетного случая, допустимого по геологическим условиям русла удельного расхода, с учетом гид­равлической работы других сооружений (ГЭС, шлюза, водозаборов и т. п.), а также пропуска льда, наносов и сора.

 

 

 

3. Плотины из грунтовых материалов, их типы. Требования к материалам для возведения земляных плотин. Расчет устойчивости откосов грунтовых плотин.

Грунтовые плотины — наиболее распространенный тип плотин, что объясняется возможностью полной механизации технологического процесса по возведению плотины — от разработки грунта в карьере до укладки его в тело плотины, широким разнообразием конструкций плотин, которые позволяют использовать для тела плотины практически любые грунты, находящиеся вблизи створа. При возведении грунтовых плотин предъявляются меньшие требования к деформированию основания, чем плотин других типов.

Грунтовые плотины по используемым материалам классифицируют на

1) земляные, в которых основной объем тела плотины (более 50 %) выполняется из мелкозернистых глинистых, песчаных или песчано-гравелистых грунтов; 2) каменно-земляные, в которых основной объем тела плотины выполняется из крупнозернистых гравийно-галечниковых грунтов или горной массы скального (иногда полускального) грунта, а противофильтрационное устройство — из мелкозернистого грунта; 3) каменные, в которых основное тело плотины, выполняется из крупнозернистого материала, а противофильтрационное устройство — из негрунтовых материалов.

Все эти плотины имеют трапециевидное поперечное сечение с прямолинейным или ломаным очертанием верхового и низового откосов. Тангенс угла наклона откоса к горизонту называется уклоном откоса tgα=l:m, a m=ctgα — коэффициент заложения откоса.

Самая верхняя кромка откоса называется его бровкой, а нижняя — подошвой откоса. Горизонтальные или слабонаклонные участки поверхности откосов называют бермами.

По конструкции плотины делят на однородные, возводимые без специальных противофильтрационных элементов, и неоднородные, тело которых состоит из грунтов двух или нескольких видов.

Неоднородные плотины по расположению противофильтрационного грунтового устройства в свою очередь делятся на плотины: с центральным ядром, когда противофильтрационное устройство из мелкозернистого грунта располагается строго по оси плотины; с наклонным ядром, когда низовая грань противофильтрационного устройства наклонена к горизонту под острым углом β, но угол наклона β больше угла естественного откоса крупнозернистого грунта; с экраном, когда угол β меньше или равен углу естественного откоса крупнозернистого грунта.

Если противофильтрационное устройство выполняется из негрунтового материала (бетон, асфальтобетон, сталь, дерево и т. д.), то по его положению в теле плотины различают экран, расположенный со стороны верхового откоса, и диафрагму, расположенную по оси плотины.

По методам производства работ плотины бывают насыпные, намывные, набросные, взрывонабросные, из сухой кладки камня.

Насыпные плотины бывают: с механическим уплотнением грунта, возводимые послойной отсыпкой с укаткой или тромбованием слоев; возводимые отсыпкой грунта в воду без механического уплотнения; возводимые отсыпкой большими слоями (10 — 50 м) насухо или с уплотнением струей воды из гидромонитора.

По высоте плотины иногда подразделяют на низкие — высотой менее 30 м; средние (30≤Н≤75 м); высокие (75< H ≤125 м) и сверхвысокие (H >125м).

По условиям пропуска строительных и эксплуатационных расходов воды грунтовые плотины подразделяют на глухие, фильтрующие и переливные. Глухие — это плотины, фильтрационный расход через которые мал по сравнению со строительными и эксплуата­ционными водосбросными расходами. Водосбросные сооружения при этом могут быть береговыми или пересекать тело плотины в виде галерей. Фильтрующие — это плотины, фильтрационный расход через которые соизмерим с расходами воды, подлежащими сбросу через водосбросные сооружения. Эти плотины могут выполняться из камня (горной массы) без специальных противофильтрационных устройств. Переливные — это плотины, на гребне и откосах которых располагают безнапорные водосбросные сооружения для пропуска строительных и эксплуатационных расходов.

Требования к грунтам для земляных плотин. К грунту как к строительному материалу для земляных плотин предъявляют требования прочности (характеризуемой сдвиговыми характеристиками – углом внутреннего трения и сцеплением), водоустойчивости (характеризуемой степенью растворимости грунта в воде) и водопроницаемости (характеризуемой коэффициентом фильтрации).

По условиям размещения грунтов можно выделить три характерные части поперечного профиля плотины: 1) основная часть, которая выполняет роль массива, обеспечивающего устойчивость всего водоподпорного сооружения и поддерживающего заданные уровни верхнего бьефа; 2) часть, занятая противофильтрационными устройствами – ядрами, экранами, понурами, замками, зубьями и пр.; 3) часть, занятая дренажем. Грунты каждой из этих частей поперечного профиля плотины должны отвечать различным требованиям исходя из выполняемых ими задач. В основной части практически можно использовать все виды нескальных грунтов, а также отходы металлургической промышленности и тепловых электростанций. Для противофильтрационных устройств применимы маловодопроницаемые грунты (суглинки, глины, торф) и искусственные грунтовые смеси (глинобетон), для дренажей – несвязанные грунты с повышенным коэффициентом фильтрации (пески различной крупности, гравий, галька, щебень, песчано-гравелистые смеси и крупные камни).

Расчет устойчивости откосов грунтовых плотин. Метод расчета устойчивости по круглоцилиндрической поверхности обрушения. Расчет выполняется в предположении плоской деформации на участке плотины толщиной 1 м. Разделим массив обрушения на столбики шириной b и выразим коэффициент запаса устойчивости массива обрушения как отношение момента реактивных сил к моменту активных сил.

где предельно возможная величина реактивного касательного напряжения; активные касательные напряжения; дуга обрушения. Возьмем n-ый отсек и приложим действующие силы к отсеку: собственный вес отсека Gn, Tn и Tn+1 – силы трения по боковым граням отсека; En и En+1 – давление грунта от рядом расположенных отсеков на боковые грани рассматриваемого отсека; Wn и Wn+1 – фильтрационное давление по боковым граням отсека; соответственно нормальные и касательные напряжения по поверхности обрушения. С учетом всех сил получим:

где и cn – угол внутреннего трения и сцепления грунта в n - ом столбике массива обрушения.

Для определения коэффициента запаса устойчивости откоса необходимо выполнить цикл расчетов, задаваясь различными положением кривой обрушения и отыскивая такую кривую, которая даст минимальное значение Поиск наиболее опасной кривой выполняют последовательно, задаваясь центрами дуги обрушения. Из каждого центра проводят несколько поверхностей и за основу сравнения выбирают такую поверхность, которая дает минимальный коэффициент запаса.

Все расчеты устойчивости низового откоса обычно выполняют при уровне воды в ВБ на отметке НПУ, ФПУ и мин и макс уровнях воды в НБ.

Расчет устойчивости верхового откоса выполняют при различных положениях воды в ВБ на отметке НПУ, УМО, на 1/3Н от основания.

 

Требования, предъявляемые к гидротехническому бетону. Марки и классы бетона. Зонирование бетона в гидросооружениях. Контроль качества бетона.

Бетон в гидротехнических сооружениях подвергается различным физико-химическим и механическим воздействиям воды речной или морской, поэтому он должен обладать особыми свойствами, обеспечивающими прочность и долговечность сооружений. Такой бетон называют гидротехническим.

Этот бетон должен обладать следующими качествами: 1)достаточной прочностью; 2)морозостойкостью-сопротивляемость разрушительному действию попеременного замерзания и оттаивания воды в его порах; 3) водостойкостью-сопротивляемостью коррозии; 4)сопротивлением истиранию и кавитационному воздействию воды; 5) монолитностью и трещеностойкостью-сопроивляемостью образования трещин и каверн; 6) удобоукладываемостью при производстве работ.

Прочность бетона зависит от его состава-марки и количества цемента, характера крупного заполнителя и количества воды затворения (водоцементного отношения),от возраста бетона, условий твердения. Прочность характеризуется классом бетона по прочности на сжатие и на растяжение в МПа. Классы бетона по прочности на сжатие: В5; В7,7; В10; В15; В20; В25; В30; В35; В40. На растяжение В0,7; В1,2; В1,6; В2,0; В2,4; В2,8; В3,2. Класс бетона определяется испытанием прочности на сжатие стандартных образцов- призм или соответственно на растяжение(разрыв) образцов-«восьмерок». Образцы испытываются по достижении ими возраста 180 сут.

Водонепроницаемость бетона зависит от его плотности и трещиностойкости. Марки: W2,W4, W6,W8, W10, 16, 18,20. Марка назначается в зависимости то перепада напора(отношение max напора к толщине конструкции) и температуры воды. По водонепроницаемости в 180-суточном возрасте бетон делят на четыре марки: W2; W4; W6; W8 Бетон марки W2 при стандартном испытании не должен пропускать воду при давлении 0,2 МПа, бетон марок W4, W6 и W8— при давлении соответственно 0.4; 0,6 и 0,8 МПа.

Морозостойкость зависит от пористости бетона, размеров пор и равномерности их распределения. За проектную марку принимают число выдерживаемых испытаний образцом в возрасте 28 сут циклов замораживания и оттаивания без снижения прочности бетона не более чем на 15%. Марки:F50, F100,150; 200; 300; 400; 500; 600.

Водостойкость: бетон подвергается насыщению водой или фильтрации. В зависимости от состава воды, бетон подвергается разрушению(пресная вода, вода с растворенными кислотами, солями). Повышение водостойкости достигается увеличением плотности бетона.

Сопротивление бетона истиранию и кавитации: истирание имеет место, когда поток движется с большими скоростями и с наносами. Кавитация- разруш бетона к зонах высоких вакуумов и больших скоростей, когда бетон подвергается бомбандир кавит пузырьков, создающих большое давление.

Трещиностойкость: Основная причина трещин в конструкциях -неравномерное изменение температуры в них, возникают температурные напряжения, которые приводят к образованию трещин. Трещины могут возникнуть и от перегрузок, неравномерной осадке. Для уменьшения температурных напряжений используют низкотермические цементы.

Удобоукладываемость: в зависимости от водоцементного отношения бетон смесь обладает различной подвижностью или Удобоукладываемость. Показатель подвижности –осадка стандартного конуса. Различают смеси: жесткие (для массивных конструкций), малоподвижные, умеренно жесткие, подвижные (в Ж/Б конструкциях).

 

Зонирование бетона в теле плотины. При зонировании бетона помимо условий прочности учитываются вышеперечисленные требования к бетону. В зоне А (зона всегда открытая для атмосферных факторов, колебаний тем-р) укладывают морозостойкий бетон на глубину промерзания. В зоне Б(зона колебания уровня воды) бетон должен быть водостойким, водонепроницаемым и морозостойким. В зону В (зона постоянно находящаяся под водой) укладывается водостойкий и водонепроницаемый бетон. В зоне Г подошвы, за пределами цемен. завесы и дренажа, а также по низовой грани, постоянно находящейся под водой, треб-я водонепрониц может быть снижено или снято. Ширина каждой зоны должна быть не менее 2м.

Контроль качества: Число подлежащих испытанию серий образцов бетона каждой марки назначают из расчета одной серии (три образца) на следующие объемы работ: для массивных сооружений - на каждые 100 м3 уложенного бетона, для массивных фундаментов под оборудование - на каждые 50 м3 уложенного бетона, но не менее одной серии на каждый фундамент, для каркасных конструкций - на каждые 20 м3 уложенного бетона.

Число серий следует увеличивать до 2-3 при ранних сроках ввода в эксплуатацию конструкций менее, чем через 28 дн. после укладки бетона, и при особых условиях работы. Изготовление и хранение контрольных образцов производят по ГОСТ 10180. Для определения прочности бетона на сжатие изготавливают образцы-кубы, размеры которых зависят от наибольшей крупности зерен заполнителя.

 

СНиП 33-01-2003

5.3.1 Для обоснования надежности и безопасности гидротехнических сооружений должны выполняться расчеты гидравлического, фильтрационного и температурного режимов, а также напряженно-деформированного состояния системы «сооружение - основание» на основе применения современных, главным образом, численных методов механики сплошной среды с учетом реальных свойств материалов и пород оснований.

5.3.2 Обеспечение надежности системы «сооружение - основание» должно обосновываться результатами расчетов по методу предельных состояний их прочности (в том числе фильтрационной), устойчивости, деформаций и смещений.

Расчеты необходимо производить по двум группам предельных состояний:

по первой группе (потеря несущей способности и (или) полная непригодность сооружений, их конструкций и оснований к эксплуатации) - расчеты общей прочности и устойчивости системы «сооружение-основание», общей фильтрационной прочности оснований и грунтовых сооружений, прочности отдельных элементов сооружений, разрушение которых приводит к прекращению эксплуатации сооружений; расчеты перемещений конструкций, от которых зависит прочность или устойчивость сооружений в целом и др.;

по второй группе (непригодность к нормальной эксплуатации) - расчеты местной, в том числе фильтрационной, прочности оснований и сооружений, перемещений и деформаций, образования или раскрытия трещин и строительных швов; расчеты прочности отдельных элементов сооружений, не относящиеся к расчетам по предельным состояниям первой группы.

5.3.3 При расчетах гидротехнических сооружений, их конструкций и оснований надлежит соблюдать следующее условие, обеспечивающее недопущение наступления предельных состояний:

где γlc - коэффициент сочетания нагрузок, принимаемый:

при расчетах по первой группе предельных состояний:

- для основного сочетания нагрузок и воздействий в период нормальной эксплуатации - 1,00;

- то же, для периода строительства и ремонта-0,95;

для особого сочетания нагрузок и воздействий:

- при особой нагрузке, в том числе сейсмической на уровне проектного землетрясения (ПЗ), годовой вероятностью 0,01 и менее - 0,95;

- при особой нагрузке, кроме сейсмической, годовой вероятностью 0,001 и менее -0,90;

- при сейсмической нагрузке уровня максимального расчетного землетрясения (МРЗ) - 0,85;

при расчетах по второй группе предельных состояний - 1,00.

Примечание - В основное сочетание нагрузок и воздействий в период нормальной эксплуатации, как правило, включают временные кратковременные нагрузки годовой вероятностью более 0,01.

F - расчетное значение обобщенного силового воздействия (сила, момент, напряжение), деформации или другого параметра, по которому производится оценка предельного состояния, определенное с учетом коэффициента надежности по нагрузке γƒ;

R - расчетное значение обобщенной несущей способности, деформации или другого параметра (при расчетах по первой группе предельных состояний - расчетное значение; при расчетах по второй группе предельных состояний - нормативное значение), устанавливаемого нормами проектирования отдельных видов гидротехнических сооружений, определенное с учетом коэффициентов надежности по материалу γm или грунту γg и условий работы γc;

γn - коэффициент надежности по ответственности сооружения, принимаемый:

при расчетах по предельным состояниям первой группы:

для класса сооружений:

I -1,25;

II -1,20;

III - 1,15;

IV-1,10;

при расчетах по предельным состояниям второй группы - 1,00.

При расчете устойчивости естественных склонов значение γn следует принимать:

- как для сооружения, которое может прийти в непригодное для эксплуатации состояние в случае разрушения склона;

- в остальных случаях - 1,00.

5.3.4 Расчетное значение нагрузки определяют умножением нормативного значения нагрузки на соответствующий коэффициент надежности по нагрузке y/-

Нормативные значения нагрузок следует определять по нормативным документам на проектирование отдельных видов гидротехнических сооружений, их конструкций и оснований.

Значения коэффициентов надежности по нагрузке γf,- при расчетах по предельным состояниям первой группы следует принимать в соответствии с обязательным приложением Д.

5.3.5 Значения коэффициентов надежности по материалу γm и грунту γg применяемых для определения расчетных сопротивлений материалов и характеристик грунтов, устанавливаются нормами на проектирование отдельных видов гидротехнических сооружений, их конструкций и оснований.

Значения коэффициента условий работы ус, учитывающего тип сооружения, конструкции или основания, вид материала, приближенность расчетных схем, вид предельного состояния и другие факторы, устанавливаются нормативными документами на проектирование отдельных видов гидротехнических сооружений, их конструкций и оснований.

5.3.6 Расчеты гидротехнических сооружений, их конструкций и оснований по предельным состояниям второй группы следует производить с коэффициентом надежности по нагрузке γf, а также с коэффициентами надежности по материалу γm и грунту γg равными 1,0, за исключением случаев, которые установлены нормативными документами на проектирование отдельных видов гидротехнических сооружений, конструкций и оснований.

5.3.7 Гидротехнические сооружения, их конструкции и основания, как правило, надлежит проектировать таким образом, чтобы условие (1) недопущения наступления предельных состояний соблюдалось на всех этапах их строительства и эксплуатации, в том числе и в конце назначенного срока их службы.

Назначенные сроки службы основных гидротехнических сооружений в зависимости от их класса должны быть не менее расчетных сроков службы, которые принимают равными:

для сооружений I и II классов -100 лет;

»» III и IV» - 50 лет.

При надлежащем технико-экономическом обосновании назначенный срок службы отдельных конструкций и элементов сооружения, разрушение которых не влияет на сохранность напорного фронта гидроузла, допускается уменьшать. При этом проектом должны быть предусмотрены технические решения, обеспечивающие восстановление разрушенных и ремонт поврежденных конструкций и элементов сооружения.

5.3.8 Расчеты конструкций и сооружений, как правило, следует производить с учетом нелинейных и неупругих деформаций, влияния трещин и неоднородности материалов, изменения физико-механических характеристик строительных материалов и грунтов основания во времени, поэтапности возведения и нагружения сооружений.

Бетонные арочные плотины. Классификация арочных плотин. Требования к геологическим условиям вмещающего скального массива. Меры по укреплению скального основания и береговых массивов.

Арочными плотинами называют криволинейные в плане водоподпорные сооружения, работающие как свод или оболочка и сопротивляющиеся действию горизонтальных нагрузок в основном за счет упора их в берега ущелья.

Горизонтальные сечения арочных плотин (арки) обычно имеют круговое очертание с нормальным опиранием пят арок в берега. Поперечные профили арочных плотин (консоли) весьма различны по форме и в ряде случаев назначаются криволинейными по вертикали.

По характеру работы на основную сдвигающую нагрузку — горизонтальное давление воды — арочные плотины принципиально отличаются от гравитационных. В арочных плотинах силы сопротивления по подошве сооружения, зависящие от веса сооружения, принимают малое участие в работе плотины против сдвига. Устойчивость их обеспе­чивается в основном за счет упора сооружения в берега. Это позволяет проектировать арочные плотины с весьма малой толщиной, определяемой лишь условием прочности материала сооружения.

Профили арочных плотин значительно более обжаты по сравнению с профилями гравитационных плотин и характеризуются так называемым коэффициентом стройности β — относительной толщиной плотины, равной β=е0/H, где е0 — толщина плотины у основания; Н — высота плотины.

Для тонких арочных плотин β<0,2 для гравитационных плотин β=0,6÷0,8. Наиболее стройными из построенных арочных плотин являются плотины Толла — β=0,023 ÷ 0,048 и Вайонт — β=0,084 и др. Таким образом толщина арочных плотин (и, следовательно, объем бетона на 1 м длины) меньше, чем гравитационных в 2 — 4, иногда в 6 — 8 раз и более. Общая экономия бетона вследствие криволинейности арочных плотин в плане несколько меньше и для современных арочных плотин составляет 35 — 65 %.

Для весьма стройных арочных плотин экономия бетона может достигать и больших значений. Так, в арочной плотине Гаж (Франция), имеющей H=38 м, ео=1,8 м и β=0,047, объем бетона составил 18 % объема бетона в гравитационной плотине.

При определении экономичности арочных плотин следует учитывать, что к бетону арочных плотин предъявляются более высокие требования, и, следовательно, его стоимость выше, чем в гравитационных плотинах, однако удорожание 1 м3 бетона обычно не превышает 10— 15 %.

Высокая экономичность арочных плотин при одновременной их надежности объясняет их широкое распространение.

Классификация арочных плотин. По относительной толщине профиля — коэффициенту стройности различаются следующие типы арочных плотин: тонкие β<0,2; толстые β=0,2÷0,35; арочно-гравитационные β>0,35.

Коэффициент стройности арочной плотины определяют обычно по размерам арочной части плотины, исключая местные утолщения (например, в виде "пробки", которая иногда устраивается в нижней части плотины).

По высоте арочные плотины разделяют на три категории: низкие—до 40 м; средней высоты 40 — 100 м; высокие— более 100 м.

По форме различают: арочные плотины с одной кривизной, поверхность которых имеет кривизну только в горизонтальном направлении (цилиндрические) и с двоякой кривизной; при значительном искривлении профиля по высоте плотины называются купольными.

По характеру сопряжения с основанием различают следующие типы арочных плотин: с упругой заделкой пят; с контуром (периметральным) швом; со швами или швами-надрезами, устраиваемыми в нижней части опирания сооружения.

По способу пропуска воды арочные плотины бывают: глухие, не имеющие устройств для сброса воды; водосбросные, с поверхностными или глубинными отверстиями.

По материалу арочные плотины могут быть: каменные, бетонные, железобетонные. Как правило, арочные плотины строят бетонными; железобетонные арочные плотины строят редко, каменные в настоящее время не строят.

Существуют и другие менее характерные признаки классификации арочных плотин, например, различают арочные плотины в узких или широких (L/H>3÷3,5) створах, в симметричных или несимметричных ущельях и т. д.

Геологические условия должны обеспечивать возможность передачи значительных усилий от плотины на берега долины при высоком уровне сжимающих напряжение в плотине (достигающих 10-12 МПа). Для восприятия указанных усилий берега в створе плотины должны быть сложены прочной, монолитной, малодеформирующейся скалой. Кроме того, скала должны быть водоустойчивой и водонепроницаемой. Таким требованиям наиболее удовлетворяют- песчаники, известняки.

Для обеспечения прочности основания в зоне примыкания плотины в зависимости от качества скального массива предусматривают: удаление верхнего слабого слоя скалы; устройство укрепительной цементации скалы и места контакта бетона со скалой; проведение расчистки и заполнения бетоном крупных трещин и полостей; устройство в слабой скале специальных конструкций (стенок, контрфорсов) для передачи нагрузки от плотины на прочные зоны породы; анкеровку недостаточно устойчивых и прочных массивов скалы; защиту склонов скалы слоем бетона.

Укрепительная цементация скалы производиться под подошвой плотины на глубину 10-30 м в зависимости от прочностных и деформативных характеристик скального массива.

Противофильтрационные мероприятия предусматривают устройство цементационных и дренажных завес. Они устраиваются как в основании плотины, так и в береговых ее примыканиях. В основании плотины зывесы выполняются вертикальными или несколько наклонёнными в стороны ВБ. Для береговых участков предпочтителен разворот в сторону ВБ, что особенно важно для устойчивых береговых примыканий плотины.


 

Требования к размерам водопропускных сооружений.

Число и размеры водосбросных сооружений определяют исходя из условий пропуска расхода воды основного расчетного случая. Ширина (пролет) и высота прямоугольных отверстий водопропускных сооружений, перекрываемых затвором, стандартизованы и выбираются из ряда значений. За ширину отверстия принимают размер в свету между боковыми вертикальными гранями сооружения, ограничивающими водопропускное отверстие. Для поверхностных отверстий высота — это расстояние от верхней грани порога до верхней кромки обшивки затвора, а для глубинных — расстояние от дна до потолка отверстий.

Размеры и число отверстий поверхностных и глубинных водосбросных устройств принимают на основании сравнения технико-экономических показателей различных вариантов их выбора в зависимости от сбросного расхода воды основного расчетного случая, допустимого по геологическим условиям русла удельного расхода, с учетом гид­равлической работы других сооружений (ГЭС, шлюза, водозаборов и т. п.), а также пропуска льда, наносов и сора.

 

 

 

3. Плотины из грунтовых материалов, их типы. Требования к материалам для возведения земляных плотин. Расчет устойчивости откосов грунтовых плотин.

Грунтовые плотины — наиболее распространенный тип плотин, что объясняется возможностью полной механизации технологического процесса по возведению плотины — от разработки грунта в карьере до укладки его в тело плотины, широким разнообразием конструкций плотин, которые позволяют использовать для тела плотины практически любые грунты, находящиеся вблизи створа. При возведении грунтовых плотин предъявляются меньшие требования к деформированию основания, чем плотин других типов.

Грунтовые плотины по используемым материалам классифицируют на

1) земляные, в которых основной объем тела плотины (более 50 %) выполняется из мелкозернистых глинистых, песчаных или песчано-гравелистых грунтов; 2) каменно-земляные, в которых основной объем тела плотины выполняется из крупнозернистых гравийно-галечниковых грунтов или горной массы скального (иногда полускального) грунта, а противофильтрационное устройство — из мелкозернистого грунта; 3) каменные, в которых основное тело плотины, выполняется из крупнозернистого материала, а противофильтрационное устройство — из негрунтовых материалов.

Все эти плотины имеют трапециевидное поперечное сечение с прямолинейным или ломаным очертанием верхового и низового откосов. Тангенс угла наклона откоса к горизонту называется уклоном откоса tgα=l:m, a m=ctgα — коэффициент заложения откоса.

Самая верхняя кромка откоса называется его бровкой, а нижняя — подошвой откоса. Горизонтальные или слабонаклонные участки поверхности откосов называют бермами.

По конструкции плотины делят на однородные, возводимые без специальных противофильтрационных элементов, и неоднородные, тело которых состоит из грунтов двух или нескольких видов.

Неоднородные плотины по расположению противофильтрационного грунтового устройства в свою очередь делятся на плотины: с центральным ядром, когда противофильтрационное устройство из мелкозернистого грунта располагается строго по оси плотины; с наклонным ядром, когда низовая грань противофильтрационного устройства наклонена к горизонту под острым углом β, но угол наклона β больше угла естественного откоса крупнозернистого грунта; с экраном, когда угол β меньше или равен углу естественного откоса крупнозернистого грунта.

Если противофильтрационное устройство выполняется из негрунтового материала (бетон, асфальтобетон, сталь, дерево и т. д.), то по его положению в теле плотины различают экран, расположенный со стороны верхового откоса, и диафрагму, расположенную по оси плотины.

По методам производства работ плотины бывают насыпные, намывные, набросные, взрывонабросные, из сухой кладки камня.

Насыпные плотины бывают: с механическим уплотнением грунта, возводимые послойной отсыпкой с укаткой или тромбованием слоев; возводимые отсыпкой грунта в воду без механического уплотнения; возводимые отсыпкой большими слоями (10 — 50 м) насухо или с уплотнением струей воды из гидромонитора.

По высоте плотины иногда подразделяют на низкие — высотой менее 30 м; средние (30≤Н≤75 м); высокие (75< H ≤125 м) и сверхвысокие (H >125м).

По условиям пропуска строительных и эксплуатационных расходов воды грунтовые плотины подразделяют на глухие, фильтрующие и переливные. Глухие — это плотины, фильтрационный расход через которые мал по сравнению со строительными и эксплуата­ционными водосбросными расходами. Водосбросные сооружения при этом могут быть береговыми или пересекать тело плотины в виде галерей. Фильтрующие — это плотины, фильтрационный расход через которые соизмерим с расходами воды, подлежащими сбросу через водосбросные сооружения. Эти плотины могут выполняться из камня (горной массы) без специальных противофильтрационных устройств. Переливные — это плотины, на гребне и откосах которых располагают безнапорные водосбросные сооружения для пропуска строительных и эксплуатационных расходов.

Требования к грунтам для земляных плотин. К грунту как к строительному материалу для земляных плотин предъявляют требования прочности (характеризуемой сдвиговыми характеристиками – углом внутреннего трения и сцеплением), водоустойчивости (характеризуемой степенью растворимости грунта в воде) и водопроницаемости (характеризуемой коэффициентом фильтрации).

По условиям размещения грунтов можно выделить три характерные части поперечного профиля плотины: 1) основная часть, которая выполняет роль массива, обеспечивающего устойчивость всего водоподпорного сооружения и поддерживающего заданные уровни верхнего бьефа; 2) часть, занятая противофильтрационными устройствами – ядрами, экранами, понурами, замками, зубьями и пр.; 3) часть, занятая дренажем. Грунты каждой из этих частей поперечного профиля плотины должны отвечать различным требованиям исходя из выполняемых ими задач. В основной части практически можно использовать все виды нескальных грунтов, а также отходы металлургической промышленности и тепловых электростанций. Для противофильтрационных устройств применимы маловодопроницаемые грунты (суглинки, глины, торф) и искусственные грунтовые смеси (глинобетон), для дренажей – несвязанные грунты с повышенным коэффициентом фильтрации (пески различной крупности, гравий, галька, щебень, песчано-гравелистые смеси и крупные камни).

Расчет устойчивости откосов грунтовых плотин. Метод расчета устойчивости по круглоцилиндрической поверхности обрушения. Расчет выполняется в предположении плоской деформации на участке плотины толщиной 1 м. Разделим массив обрушения на столбики шириной b и выразим коэффициент запаса устойчивости массива обрушения как отношение момента реактивных сил к моменту активных сил.

где предельно возможная величина реактивного касательного напряжения; активные касательные напряжения; дуга обрушения. Возьмем n-ый отсек и приложим действующие силы к отсеку: собственный вес отсека Gn, Tn и Tn+1 – силы трения по боковым граням отсека; En и En+1 – давление грунта от рядом расположенных отсеков на боковые грани рассматриваемого отсека; Wn и Wn+1 – фильтрационное давление по боковым граням отсека; соответственно нормальные и касательные напряжения по поверхности обрушения. С учетом всех сил получим:

где и cn – угол внутреннего трения и сцепления грунта в n - ом столбике массива обрушения.

Для определения коэффициента запаса устойчивости откоса необходимо выполнить цикл расчетов, задаваясь различными положением кривой обрушения и отыскивая такую кривую, которая даст минимальное значение Поиск наиболее опасной кривой выполняют последовательно, задаваясь центрами дуги обрушения. Из каждого центра проводят несколько поверхностей и за основу сравнения выбирают такую поверхность, которая дает минимальный коэффициент запаса.

Все расчеты устойчивости низового откоса обычно выполняют при уровне воды в ВБ на отметке НПУ, ФПУ и мин и макс уровнях воды в НБ.

Расчет устойчивости верхового откоса выполняют при различных положениях воды в ВБ на отметке НПУ, УМО, на 1/3Н от основания.

 

Нагрузки и воздействия на гидротехнические сооружения. Определение их нормативных и расчетных значений. Расчетные сочетания нагрузок и воздействий.

Нагрузки и воздействия делят на постоянные и временные. Основное сочетание нагрузок соответствуют средним по водности и температуре воздуха условиям, включает в себя: постоянные, временные длительные и кратковременные нагрузки и воздействия.



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 1078; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.206.169 (0.085 с.)