ТОП 10:

Агранулярная эндоплазматическая сеть



Агранулярная эндоплазматическая сеть ( АГС) - сеть анастомозирующих трубочек, канальцев, цистерн, пузырьков, d 30-100 нм. Она занимает меньший обьем, чем гр. ЭПС и хорошо развита в клетках, синтезирующих стероиды, триглицириды и холестерин, а также в клетках, накапливающих ионы Са. Последнее связано с наличием в ее мембране: 1. Кальциевого насоса, накапливающего эти ионы из гиалоплазмы внутрь цистерн а ЭПС, здесь Са связан с белком --- кальсеквестрин ( мышечная клетка ) и --- кальретикулин ( не мышечная клетка). ( Са - АТФ- азы).

2. В а ЭПС имеются и кальциевые каналы, которые обеспечивают выведение Са в гиалоплазму ( по градиенту концентрации).

3. Мембраны содержат ферменты, активирующие синтез липидных компонентов липопротеинов.

4. Ферменты, катализирующие реакцию детоксикации.

5. Клетки, синтезирующие стероидные гормоны.

Патология: 1. Миопатия Броди – это результат недостаточности Са -АТФ-азы

саркоплазматического ретикулума и проявляется она симптомом мышечной усталости при физической нагрузке.

 

Комплекс Гольджи - полярная структура, в ней различают две поверхности:

1. Цис – незрелую, формирующуюся поверхность.

2. Транс – зрелую, обращенную к плазмолемме.

3. Между этими двумя поверхностями – цистерны медиальной части комплекса Гольджи.

Вещества попадают с цис-поверхности , а выходят с транс-поверхности. Логически возникает вопрос о переносе веществ внутри комплекса. Пути транспорта по 2 возможным моделям или путям.

1. Транспорт самих цистерн, образованных в результате слияния пузырьков самой нижней цистерны и последующий распад самой верхней на пузырьки или вакуоли ( сеть транс-Гольджи), зона сортировки белков.Операции процессинга сменяются перемещением самой цистерны.

2. Путь везикулярного транспорта , при котором цистерны стоят на месте, а продукты синтеза перемещаются от цис- к транс-поверхности системой пузырьков ( везикул).

Функции комплекса Гольджи

1. Синтез полисахаридов и гликопротеинов ( гликокаликс, слизь).

2. Процессинг молекул:

а) терминальное гликозилирование

б) фосфорилирование

в) сульфатирование

г) протеолитическое расщепление ( части белковых молекул)

3. Конденсация секреторного продукта.

4. Упаковка секреторного продукта

5. Сортировка белков в зоне сети транс- Гольджи ( за счет специфических рецепторных мембранных белков, которые распознают сигнальные участки на макромолекулах и направляют их в соответствующие пузырьки). Транспорт из комплекса Гольджи идет в виде 3-х потоков:

1. Гидролазные пузырьки ( или первичные лизосомы)

2. В плазмолемму ( в составе окаймленных пузырьков)

3. В секреторные гранулы

 

Эндосомы - мембранные пузырьки с закисляющимся содержимым и обеспечивающие перенос молекул в клетку. Тип переноса веществ системой эндосом различный:

1. С перевариванием макромолекул ( полным)

2. С частичным их расщеплением

3. Без изменения по ходу транспорта

Процесс транспорта и последующего расшепления веществ в клетке с помощью эндосом состоит из следующих последовательных компонентов:

1. Ранняя ( периферическая ) эндосома

2. Поздняя(перинуклеарная) эндосома прелизосомальный этап переваривания

3. Лизосома

 

Ранняя эндосома – лишенный клатрина пузырек на периферии клетки. рН среды 6,0, здесь происходит ограниченный и регулируемый процесс расщепления (лиганд отделяется от рецептора) --- возвращение рецепторов в мембрану клетки. Ранняя эндосома еще известна как Curl.

Поздняя ( перинуклеарная ) эндосома : а) более кислое содержимое рН 5,5

б) диаметр больший до 800 нм

в) более глубокий уровень переваривания

Это переваривание лиганд ( периферическая эндосома + перинуклеарная эндосома) --- мультивезикулярное тельце .

 

Лизосомы

1. Фаголизосома – она формируется при слиянии поздней эндосомы или лизосомы с фагосомой . Процесс разрушения этого материала называется гетерофагией.

2.Аутофаголизосома– она формируется при слиянии поздней эндосомы или лизосомы с аутофагосомой.

3. Мультивезикулярное тельце– крупная вакуоль ( 800 нм) , состоящая из мелких 40-80 нм пузырьков, окруженных умеренно плотным матриксом. Оно образуется в результате слияния ранней и поздней эндосом.

4. Остаточные тельца- это непереваренный материал. Самым известным компонентом этого типа являются липофусциновые гранулы – пузырьки диам. 0,3 – 3 мкм, содержащие пигмент липофусцин.

 

Цитоскелет – это система микротрубочек , микрофиламентов ( промежуточных , микротрабекул ). Все они формируют трехмерную сеть , взаимодействуя с сетями из других компонентов.

1. Микротрубочки– полые цилиндры диам. 24-25 нм, стенка толщиной 5 нм, диам. просвета – 14-15 нм. Стенка состоит из спирально уложенных нитей ( они называются протофиламенты) толщиной 5 нм. Эти нити образованы димерами и тубулина. Это лабильная система, у которой один конец ( обозначаемый “__” ) закреплен, а другой ( “ + “) свободен и участвует в процессе деполимеризации.

Микротрубочкиассоциированы с рядом белков, имеющих общее название МАР – они связывают микротрубочки с другими элементами цитоскелета и органеллами . Кинезин –( шаг его перемещения по поверхности микротрубочки составляет 8 нм ).

Органелла

рис. Микротрубочка

 

Микрофиламенты– это две переплетенные нити F-актина , составленные из g- актина. Диаметр их составляет 6 нм. Микрофиламенты полярны, присоединение g -актина происходит на ( “+”) конце. Они образуют скопления

по периферии клетки и связаны с плазмолеммой посредством промежуточных белков ( -актин, винкулин, талин).

Функция: 1. Изменение цитозоля ( переход золя в гель и обратно).

2. Эндоцитоз и экзоцитоз.

3. Подвижность немышечных клеток.

4. Стабилизация локальных выпячиваний плазматической мембраны.

Промежуточные нитиимеют d 8-11 нм, состоят из белков, характерных для определенных клеточных типов. Они формируют внутриклеточный каркас, обеспечивающий упругость клетки и упорядоченное расположение компонентов цитоплазмы. Промежуточные филаменты образованы нитевидными белковыми молекулами, сплетенными друг с другом наподобие каната.

Функции: 1. Структурная

2. Участие в образовании рогового вещества

3. Поддержание формы, отростков нервных клеток

4. Прикрепление миофибрилл к плазмолемме.

Микротрабекулы– ажурная сеть тонких нитей, существующая в комплексе с микротрубочками и может участвовать в транспорте органелл и влиять на вязкость цитозоля.

 

 

ЛЕКЦИЯ

ТЕМА :” ЯДРО. СТРУКТУРА ИНТЕРФАЗНОГО ЯДРА. ОСНОВЫ БИОСИНТЕТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ КЛЕТКИ”

Ядро является основной частью клетки, кодирующей информацию о структуре и функции органа. Эта информация заложена в генетическом материале, ДНК, представляющей собой в комплексе с основными белками ( гистонами) ДНП. За некоторым исключением ( митохондрии) ДНК локализуется исключительно в ядре. ДНК способна реплицироваться сама, обеспечивая тем самым передачу генетического кода дочерним клеткам в условиях клеточного деления.

Ядро играет центральную роль в синтезе белка и полипептидов, являясь носителем генетической информации. Все ядра клеток организма содержат те же самые гены, одни клетки различны по своей структуре, функции и характеру продуцируемых клеткой веществ. Ядерный контроль осуществляется путем

репрессии или депрессии ( экспрессии) активности различных генов. Трансляция о характере синтеза белка связана с образованием м-РНК. Многие РНК – это комплекс белка и РНК, т.е. РНП. Интерфазное ядро в большинстве клеток – это образование округлой или овальной формы в несколько мм в диаметре. В лейкоцитах и клетках соединительной ткани ядро дольчатое и обозначается термином полиморфное.

Интерфазное ядроимеет несколько различных структур: ядерную оболочку, хроматин, кариолимфу и ядрышко.

Ядерная оболочка

1. Наружная ядерная мембрана– на поверхности расположены рибосомы, где синтезируются белки, поступающие в перинуклеарные цистерны. Со стороны цитоплазмы она окружена рыхлой сетью промежуточных ( виментиновых) филаментов.

2. Перинуклеарные цистерны– часть околоядерных цистерн связана с гранулярной эндоплазматической сетью ( 20-50 нм).

3. Внутренняя ядерная мембрана – отделена от содержимого ядра ядерной пластинкой.

4. Ядерная пластинкатолщиной 80-300 нм, участвует в организации ядерной оболочки и перинуклеарного хроматина, содержит белки промежуточных филаментов – ламины А, В и С.

5. Ядерная пора – от 3-4 тысяч специализированных коммуникаций, осуществляют транспорт между ядром и цитоплазмой . Ядерная пора d 80 нм, имеет: а) канал поры – 9 нм

б) комплекс ядерной поры, последний содержит белок-рецептор, реагирующий на сигналы ядерного импорта ( входной билет в ядро).Диаметр ядерной поры может увеличивать диаметр канала поры и обеспечивать перенос в ядро больших макромолекул ( ДНК-РНК – полимераза).

Ядерная порасостоит из 2-х параллельных колец по одному с каждой поверхности кариолеммы. Кольцо диаметром 80 нм, образованы они 8 белковыми гранулами , от каждой гранулы к центру тянется нить ( 5 нм), которая формирует перегородку ( диафрагму). В центре расположена центральная гранула . Совокупность этих структур называется комплекс ядерной поры.Здесь формируется канал диаметром 9 нм, такой канал называют водным, поскольку по нему движутся мелкие водорастворимые молекулы и ионы.

Функции ядерной поры: 1. Избирательный транспорт;

2. Активный перенос в ядро белков с последовательностью, характерной для белков ядерной локализации;

3. Перенос в цитоплазму субьединиц рибосом с изменением конформации порового комплекса.

Внутренняя ядерная мембрана- гладкая и связана с помощью интегральных белков с ядерной пластинкой, которая представляет собой слой, толщиной 80-300 нм. Эта пластинка или ламина– состоит из переплетенных промежуточных филаментов ( 10 нм), формирующих кариоскелет. Функции ее :

1. Сохранение структурной организации поровых комплексов;

2. Поддержание формы ядра;

3. Упорядоченная укладка хроматина.

Она формируется в результате спонтанной ассоциации 3-х главных полипептидов. Это структурный каркас ядерной оболочки с участками специфического связывания хроматина.







Последнее изменение этой страницы: 2016-07-16; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 35.175.121.230 (0.006 с.)