Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Преобразователи постоянного напряжения повышающий с инверсией.

Поиск

Этот тип преобразователя называется также преобразователем с параллельным индуктивным накопителем. Реактор L накапливает энергию при включенном состоянии ключа S, передает ее в нагрузку .

Рисунок 17.5 - Повышающий широтно-импульсный преобразователь с инверсией выходного напряжения- a, диаграмма его работы - b

При включенном ключе (интервал I) к реактору L приложено напряжение Е и он накапливает энергию за счет протекания тока . Длительность этого интервала соответствует времени включенного состояния ключа . При выключении ключа диод VD переходит в проводящее состояние и энергия реактора поступает в нагрузку (интервал II). Длительность интервала II соответствует времени выключенного состояния ключа . Принимая ключ S, источник E и реактор идеальными, а сопротивление нагрузки малым, составим уравнения

для I-го интервала

, (17.10)

иII –го интервала

. (17.11)

Учитывая, что изменение тока происходит по линейному закону, уравнения можно переписать в виде

, (17.12)

. (17.13)

Из этих уравнений следует, что , в соответствии с этим выражением регулировочная характеристика имеет вид показанный на рисунке 17.6,III.

 

Рисунок 17.6 - Регулировочные характеристики импульсных преобразователей: понижающего - I, повышающего –II, повышающего с инверсией –III

АВТОНОМНЫЙ ИНВЕРТОР ТОКА.

Автономными инверторами называют преобразователи постоянного напряжения в переменное, работающие на автономную (отдельную) нагрузку, не связанную с питающей сетью.

Самой распространенной схемой АИТ является симметричная мостовая схема (рисунок 18.1).

Рисунок 18.1 - Схема однофазного мостового АИТ

В нее входит инверторный мост на тиристорах VT1….VT4, в диагональ которого включена активная нагрузка и параллельно ей - конденсатор С. Схемным признаком АИТ является наличие дросселя с достаточно большой индуктивностью в цепи источника питания; который обеспечивает постоянство тока, потребляемого от источника постоянного напряжения..

Рисунок 18.2 - Временная диаграмма работы однофазного АИТ

Пусть на интервале 1-2 открыты тиристоры VT1, VT2, тогда нагрузка с параллельным конденсатором будет подключена к источнику тока . Напряжение на нагрузке будет изменяться по экспоненте из-за заряда конденсатора. В точке 2 подается опирающий импульс на VT1 и VT4. Цепь нагрузки оказывается замкнутой накоротко через открытые тиристоры. Возникают два контура разряда: первый контур VT1-VT2, второй контур VT3-VT4. В первом контуре ток разряда протекает на встречу анодному току тиристора VT1, а во втором - на встречу анодному току тиристора VT3. Анодные токи через тиристоры практически мгновенно становятся равными нулю и тиристоры VT1 и VT3 закрываются. Ток начинает протекать через тиристоры VT2 и VT4, направление тока меняется на противоположное. Напряжение на нагрузке из-за наличия конденсатора начинает уменьшаться по экспоненте. Это напряжение прикладывается к тиристорам в обратном направлении в течении времени , которое должно быть больше , что позволяет тиристорам восстановить свои запирающие свойства. В противном случае, после прохождения напряжения через ноль может произойти повторное включение тиристоров VT1 и VT3, тогда все четыре тиристора окажутся открытыми. Это явление является аварийным и называется опрокидыванием инвертора.

Форма, значение выходного напряжения и время отводимое на запирание тиристоров , зависят постоянной времени разряда конденсатора через резистивную нагрузку .

Рассмотрим процесс разряда емкости под действием тока

Рис.3. К определению времени отводимого на закрытие тиристора

В соответствии с эквивалентной схемой (рисунок 18.13,а) запишем

; . (18.1)

Решая полученное дифференциальное уравнение, получим

, (18.2)

где начальное напряжение на конденсаторе при

Если , то, как видно из рисунка 18.3,b

, а при , . (18.3)

Подставляя в предыдущее выражение, получим

, (18.4)

. (18.5)

Пользуясь последним выражением, найдем , как момент когда

, (18.6)

. (18.7)

При увеличении сопротивления нагрузки увеличивается амплитуда напряжения на нагрузке и время, отводимое на закрытие тиристора (рисунок 18.3,b) и наоборот.. Оба случая нежелательны, т.к. при больших возможен пробой тиристоров, а при малых значениях может произойти опрокидывание инвертора.



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 277; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.85.108 (0.005 с.)