Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Достоинства и недостатки железобетонных конструкций

Поиск

К достоинствам железобетонных конструкций относятся:

· высокая прочность:

· большая долговечность;

· высокая степень огнестойкости;

· стойкость против атмосферных воздействий;

· малые эксплуатационные расходы на содержание;

· гигиеничность;

· экономичность ввиду повсеместной доступности сырья.

Недостатки железобетонных конструкций.

За счет сцепления с арматурой бетон работает под нагрузкой совместно с арматурой. Предельная растяжимость бетона в тысячу раз меньше предельной растяжимости стальной арматуры, поэтому при совместном растяжении цельность бетона сохраняется только в начальный период эксплуатации (см. рис. 1, б). Напряжения в арматуре в период образования трещин всегда незначительны по сравнению с предельной прочностью арматуры.

С увеличением внешней нагрузки в изгибаемых балках происходит развитие по высоте сечения балки трещин, резко уменьшается высота сжатой зоны, снижается жесткость балки, что приводит к возрастанию прогиба.

С учетом вышеизложенного к недостаткам железобетонных конструкций без предварительного напряжения относятся:

· низкая трещиностойкость вследствие слабого включения в работу арматуры в период образования трещин, быстрое их раскрытие и быстрый рост прогибов;

· нерациональность использования в железобетонных конструкциях без предварительного напряжения высокопрочной арматуры;

· невыгодность использования бетонов повышенной и высокой прочности, поэтому железобетонные конструкции без предварительного напряжения обладают большой массой, что ограничивает величину перекрываемых пролетов;

· большая трудоемкость при изготовлении;

· большая звуко- и теплопроводность.

Виды железобетонных конструкций

1. Сборные конструкции – конструкции, возведение которых на строительной площадке производят из заранее изготовленных элементов.

2. Монолитные конструкции – конструкции, возведение которых осуществляют непосредственно на строительной площадке.

3. Сборно–монолитные конструкции – комплексные конструкции, в которых сборный и монолитный железобетон, укладываемый на месте строительства, работает под нагрузкой как одно целое.

Лекция №3. Бетон

Общие сведения

Для обеспечения долговечной и нормальной эксплуатации бетон для железобетонных конструкций должен иметь необходимые для этого физико-механические свойства:

  • прочность;
  • хорошее сцепление с арматурой;
  • непроницаемость для защиты арматуры от коррозии;
  • специальные требования: морозостойкость, жаростойкость, коррозионная стойкость и др.

 

Классификация бетонов

1. По структуре:

а) плотные;

б) крупнопористые;

в) поризованные;

г) ячеистые.

2. По плотности:

а) особо тяжелые (ρ > 2500 кг/м3);

б) тяжелые (ρ = 2200 ÷ 2500 кг/м3);

в) облегченные (чаще мелкозернистые) (ρ = 1800 ÷ 2200 кг/м3);

г) легкие (ρ = 800 ÷ 1800 кг/м3).

3. По виду заполнителей:

а) на плотных заполнителях (щебень, песок, гравий);

б) на пористых заполнителях (естественных – пемза, перлит, ракушечник; искусственных – керамзит, шлак);

в) на специальных заполнителях.

4. По зерновому составу:

а) крупнозернистые;

б) мелкозернистые.

5. По условиям твердения:

а) бетоны естественного твердения;

б) бетоны, подвергнутые тепловлажностной обработке при атмосферном давлении;

в) бетоны, подвергнутые автоклавной обработке при высоком давлении и температуре.

 

Структура бетона

Структура бетона оказывает большое влияние на прочность и деформативность бетона. Существенным фактором является количество воды, применяемой для приготовления бетонной смеси, оцениваемое водоцементным отношением В/Ц. Для химического соединения воды с цементом необходимо, чтобы В/Ц ≈ 0,2; однако для достижения достаточной подвижности и удобоукладываемости бетонной смеси В/Ц=0,5…0,6 (подвижные бетонные смеси); В/Ц=0,3…0,4 (жесткие бетонные смеси). Избыточная химически несвязанная вода образует поры и капилляры в цементом камне, а затем, испаряясь, освобождает их. Таким образом, с уменьшением В/Ц уменьшается пористость цементного камня и прочность бетона увеличивается.

Структура бетона представляет собой пространственную решетку из цементного камня, заполненную зернами песка и щебня различной крупности и формы, пронизанную большим числом микропор и капилляров, которые содержат химически несвязанную воду, водяные пары и воздух.

 

Собственные деформации бетона

Бетон обладает свойством уменьшаться в объеме при твердении в обычной воздушной среде – усадка бетона. Она связана с физико-механическими процессами твердения и уменьшением объема цементного геля, потерей избыточной воды в результате испарения и гидратации с непрореагировавшими частицами цемента.

Усадке бетона препятствуют заполнители, которые становятся внутренними связями, вызывающими в цементном камне начальные растягивающие напряжения.

Неравномерное высыхание бетона, снаружи больше, а внутри меньше, приводит к неравномерной усадке, что ведет к возникновению начальных усадочных напряжений. Открытые, быстро высыхающие слои бетона испытывают растяжение; внутренние более влажные оказываются сжатыми. В бетоне появляются усадочные трещины.

Уменьшить начальные усадочные напряжения можно:

  • конструктивными мерами (армирование, устройство усадочных швов);

· технологическими мерами (подбор состава, увлажнение среды, увлажнение поверхности бетона).

 

Прочность бетона

Прочность бетона зависит от многих факторов, как-то:

  • структура бетона;
  • марка цемента;
  • водоцементное отношение В/Ц;
  • вид мелкого и крупного заполнителя;
  • условия твердения;
  • вид напряженного состояния;
  • форма и размеры сечения;
  • длительность действия нагрузки.

 

Кубиковая прочность

Для определения прочности бетона на осевое сжатие обычно испытывают в прессе бетонные кубы с размером ребра 150 мм, характер разрушения которых обусловлен наличием или отсутствием сил трения, возникающих на контактных поверхностях между подушками пресса и гранями куба.

  1. Несмазанный куб (рис. 2, а).

Силы трения между подушками пресса и гранями куба препятствуют свободным поперечным деформациям куба и соответственно упрочняют бетон сверху и снизу. По мере удаления от торцевых граней куба влияние сил трения уменьшается, поэтому после разрушения куб приобретает форму 2-х пирамид сверху и снизу.

  1. Смазанный куб (рис. 2, б).

Если устранить силы трения смазкой контактных поверхностей, прочность бетонного куба будет меньше, поперечные деформации проявляются свободно, трещины разрыва становятся вертикальными. Временное сопротивление сжатию бетона для куба с ребром 150 мм равно R, с ребром 200 мм - 0,93 R, с ребром 100 мм – 1,1 R. Это объясняется изменением эффекта обоймы с изменением размеров куба.

 

а) б)

Рис. 2. Характер разрушения бетонных кубов:

а – несмазанный куб; б – смазанный куб;

Δ – поперечные деформации бетона.

3.5.2. Призменная прочность

Так как железобетонные конструкции по форме отличаются от кубов, основной характеристикой прочности бетона сжатых элементов является призменная прочность Rb – временное сопротивление осевому сжатию бетонных призм. Призменная прочность меньше кубиковой, и она уменьшается с увеличением отношения h/a. Влияние сил трения на среднюю часть призмы уменьшается с увеличением ее высоты и при h/a= 4 значение Rb становится стабильным и равно приблизительно 0,75 R.

 

Рис. 3. Характер разрушения бетонной призмы.



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 321; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.255.103 (0.007 с.)