Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Сортировка с помощью дерева (Heapsort)

Поиск

Начнем с простого метода сортировки с помощью дерева, при использовании которого явно строится двоичное дерево сравнения ключей. Построение дерева начинается с листьев, которые содержат все элементы массива. Из каждой соседней пары выбирается наименьший элемент, и эти элементы образуют следующий (ближе к корню уровень дерева). Из каждой соседней пары выбирается наименьший элемент и т.д., пока не будет построен корень, содержащий наименьший элемент массива. Двоичное дерево сравнения для массива, используемого в наших примерах, показано на рисунке 5.1. Итак, мы уже имеем наименьшее значение элементов массива. Для того чтобы получить следующий по величине элемент, спустимся от корня по пути, ведущему к листу с наименьшим значением. В этой листовой вершине проставляется фиктивный ключ с «бесконечно большим» значением, а во все промежуточные узлы, занимавшиеся наименьшим элементом, заносится наименьшее значение из узлов - непосредственных потомков (рис. 5.2). Процесс продолжается до тех пор, пока все узлы дерева не будут заполнены фиктивными ключами (рисунки 5.3–5.8).

Рис. 5.1. Первый шаг

Рис. 5.2. Второй шаг

Рис. 5.3. Третий шаг

Рис. 5.4. Четвертый шаг

Рис. 5.5. Пятый шаг

Рис. 5.6. Шестой шаг

Рис. 5.7. Седьмой шаг

Рис. 5.8. Восьмой шаг

На каждом из n шагов, требуемых для сортировки массива, нужно log n (двоичный) сравнений. Следовательно, всего потребуется n log n сравнений, но для представления дерева понадобится 2n – 1 дополнительных единиц памяти.

Имеется более совершенный алгоритм, который принято называть пирамидальной сортировкой (Heapsort). Его идея состоит в том, что вместо полного дерева сравнения исходный массив a[1], a[2],..., a[n] преобразуется в пирамиду, обладающую тем свойством, что для каждого a[i] выполняются условия a[i] <= a[2i] и a[i] <= a[2i + 1]. Затем пирамида используется для сортировки.

Наиболее наглядно метод построения пирамиды выглядит при древовидном представлении массива, показанном на рисунке 5.9. Массив представляется в виде двоичного дерева, корень которого соответствует элементу массива a[1]. На втором ярусе находятся элементы a[2] и a[3]. На третьем - a[4], a[5], a[6], a[7] и т.д. Как видно, для массива с нечетным количеством элементов соответствующее дерево будет сбалансированным, а для массива с четным количеством элементов n элемент a[n] будет единственным (самым левым) листом «почти» сбалансированного дерева.

Рис. 5.9

Очевидно, что при построении пирамиды нас будут интересовать элементы a[n/2], a[n/2 – 1],..., a[1] для массивов с четным числом элементов и элементы a[(n – 1)/2], a[(n – 1)/2 – 1],..., a[1] для массивов с нечетным числом элементов (поскольку только для таких элементов существенны ограничения пирамиды). Пусть i - наибольший индекс из числа индексов элементов, для которых существенны ограничения пирамиды. Тогда берется элемент a[i] в построенном дереве и для него выполняется процедура просеивания, состоящая в том, что выбирается ветвь дерева, соответствующая min(a[2*i], a[2*i + 1]), и значение a[i] меняется местами со значением соответствующего элемента. Если этот элемент не является листом дерева, для него выполняется аналогичная процедура и т.д. Такие действия выполняются последовательно для a[i], a[i – 1],..., a[1]. Легко видеть, что в результате мы получим древовидное представление пирамиды для исходного массива (последовательность шагов для используемого в наших примерах массива показана на рисунках 5.10–5.13).

Рис. 5.10

Рис. 5.11

Рис. 5.12

Рис. 5.13

В 1964 г. Флойд предложил метод построения пирамиды без явного построения дерева (хотя метод основан на тех же идеях). Построение пирамиды методом Флойда для нашего стандартного массива показано в таблице 5.5.

Таблица 5.5

Пример построения пирамиды

В таблице 5.6 показано, как производится сортировка с использованием построенной пирамиды. Суть алгоритма заключается в следующем. Пусть i - наибольший индекс массива, для которого существенны условия пирамиды. Тогда начиная с a[1] до a[i] выполняются следующие действия. На каждом шаге выбирается последний элемент пирамиды (в нашем случае первым будет выбран элемент a[8]). Его значение меняется со значением a[1], после чего для a[1] выполняется просеивание. При этом на каждом шаге число элементов в пирамиде уменьшается на 1 (после первого шага в качестве элементов пирамиды рассматриваются a[1], a[2],..., a[n – 1]; после второго - a[1], a[2],..., a[n – 2] и т.д., пока в пирамиде не останется один элемент). Легко видеть, что в результате мы получим массив, упорядоченный в порядке убывания. Можно модифицировать метод построения пирамиды и сортировки, чтобы получить упорядочение в порядке возрастания, если изменить условие пирамиды на a[i] >= a[2*i] и a[1] >= a[2*i + 1] для всех осмысленных значений индекса i.

Таблица 5.6



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 192; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.116.61 (0.008 с.)