Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Як здійснюється термокомпенсація в підсилювачі?↑ ⇐ ПредыдущаяСтр 10 из 10 Содержание книги
Поиск на нашем сайте
Термокомпенсація передбачає застосування нелінійних елементів, параметри яких залежить від температури. Необхідна стабільність робочої точки досягається без великих затрат електричної енергії в колах стабілізації. В якості нелінійного термочутливого елемента переважно застосовують термістори або переходи напівпровідникових діодів і транзисторів. Найпростіша схема термокомпенсації наведена на рис.1.29, в якій один з резисторів базового подільника напруги замінений термістором з від’ємним знаком температурного коефіцієнта опору, значення якого приблизно складає . З підвищенням температури опір термістора зменшується, тому зменшується спад напруги на ньому і зменшується напруга між базою та емітером транзистора, внаслідок чого струм бази також зменшується, а струм колектора залишається незмінним. Необхідну залежність термочутливого елемента отримують комбінуючи з’єднання лінійних резисторів з терморезистором. Деколи ці резистори можуть бути змінними (рис.1.30). В розглянутих схемах термокомпенсація змінює режим каскаду за змінним струмом. При зростанні температури вхідних опір цих каскадів зменшується. Цей недолік усунений в схемі, де опір термістора ввімкнений в коло емітера (рис.1.31).
Рис.1.29. Схема термокомпенсації транзисторного каскаду
Рис.1.30. Схема термокомпенсації з регульованою
Рис.1.31. Схема термокомпенсації каскаду з незмінним вхідним опором Терморезистори мають неоднаковий з транзисторами температурний коефіцієнт опору і неоднакову температурну інерційність. Кращі результати термокомпенсації можна отримати застосовуючи переходи площинних діодів, оскільки їх температурні коефіцієнти напруги (ТКН) за знаком і значенням практично збігаються з ТКН переходу база-емітер транзистора (рис.1.32). Можна також підібрати діод в якого, в заданому температурному діапазоні, приріст зворотного струму збігається з приростом теплового струму транзистора . Використовуючи ці властивості діодів можна побудувати надійну і ефективну схему термокомпенсації транзисторного каскаду (рис.1.33).
Рис.1.32. Схема термокомпенсації зсуву вхідної характеристики транзистора за допомогою переходу напівпровідникового діода
Рис.1.33. Схема термокомпенсації каскаду, в якій компенсується вплив зсуву вхідної характеристики і некерованого струму транзистора
Діод призначений для компенсації температурного зсуву вхідної характеристики транзистора, а діод забезпечує компенсацію некерованого (теплового) струму колектора Ік 0транзистора, оскільки його зворотний струм протікає в протилежному напрямку до Ік 0. У випадку коли , то вплив некерованого струму колектора транзистора усувається. Загальний недолік методу термокомпенсації полягає в тому, що при заміні термокомпенсуючого елемента порушується режим термокомпенсації.
Подати схему підсилювача зі спільним колектором. Якої величини вхідний опір підсилювача зі спільним колектором? Підсилюючий каскад з СК (емітерний повторювач) VT1 – біполярний транзистор – підсилювальний елемент RE – навантаження підсилювача за постійним струмом, яке одночасно забезпечує температурну стабілізацію R1, R2 – дільники напруги C1, C2–розділяючи конденсатори: С1 виключає потрапляння постійної напруги на джерело вхідного сигналу; С2 виключає потрапляння постійної напруги з колектора на навантаження едж – джерело вхідного сигналу, аRдж – його внутрішній опір
Вхідний опір підсилювача зі спільним колектором визначається за формулою: де RБ – опір бази; RE–опір у колі емітера RЕБ – опір емітерного переходу – коефіцієнт підсилення по току Величина вхідного опору велика, порядку десятків – сотень кОм. Каскади з СК застосовують як узгодженні, коли джерело сигналу має великий Rвих, а навантаження(наприклад, каскад з СЕ) має малий Rвх.
|
||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 203; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.12.88 (0.005 с.) |