Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Все возможные выборки по 2 единицы из генеральной совокупности в 5 единиц и соответствующие им значения выборочной средней

Поиск
Первый замер Второй замер
     
   
   
   
   
     
   
   
   
   

Продолжение

Первый замер Второй замер
     
   
   
   
   
     
   
   
   
   
     
   
   
   
   

Мы видим, что из 25 возможных выборок и соответствующих средних только одна совпала с генеральной средней. Разброс значений выборочной средней составляет от 10 до 80 мин. Отсюда видно, что выборки могут быть хорошими и плохими.

Теперь мы имеем возможность оценить вероятность различных выборок. Мы видим весь диапазон вариации выборочных параметров — от 10 до 80 мин. Однако эта картина еще мало о чем говорит. Ясно одно: каждая отдельная выборка в той или иной степени далека от «истинной» — генеральной — средней. Вместе с тем нетрудно заметить, что из 25 выборок одни встречаются редко, а другие часто. Дальнейшая задача заключается в том, чтобы организовать совокупность выборок и найти в ней внутреннюю логику. Речь идет уже не о выборочных совокупностях (у нас они включают по две единицы), а о совокупности выборок. Ее объем составляет 25 единиц. Просмотрим правую колонку табл. 5.10 сверху вниз и сгруппируем значения выборочных средних в порядке их возрастания: 10, 15, 15, 20, 25, 25, 30, 30, 30, 30, 35, 35, 40, 45, 45, 45, 45, 50, 50, 50, 60, 60, 65, 65, 80. Здесь уже можно видеть, что «срединные» выборочные средние встречаются чаще, чем «крайние». Эта важная особенность распреде


ления выборочных средних становится особенно отчетливой, если мы подсчитаем для каждого значения выборочной средней частоту, с которой она встречается среди всех 25 выборок (табл. 5.11).

Таблица 5.11

Частотное распределение всех выборочных средних затрат времени на чтение в генеральной совокупности из пяти единиц, условный пример

Значения выборочных средних, мин Количество выборок, которые имеют данное среднее значении Вероятность появления данной выборки  
 
 
    0,04  
    0,08  
    0,04  
    0,08  
    0,16  
    0,08  
    0,04  
    0,16  
    0,12  
    0,01  
    0,04  
Всего   1,00  

Удивительно: несмотря на то что частотное распределение стремится к своему центру тяжести, «истинное» значение исследуемой переменной встретилось в наших 25 выборках только один раз. Однако продолжим расчеты и вычислим среднюю величину всех выборочных значений. Если вспомнить о том, что выборочное значение само представляет собой среднюю величину, задача формулируется более точно: подсчитаем среднюю всех выборочных средних. Это можно сделать в ранжированном ряду выборочных средних, который мы построили, но лучше исчислить средневзвешенную величину: умножить каждое значение переменной на его частоту, сложить произведения, а полученную сумму разделить на общее число наблюдений.

Здесь мы подходим к важному статистическому открытию, которое называется центральной предельной теоремой. Его суть заключается в том, что средняя всех возможных выборочных средних равна генеральной средней.


Действительно, подсчитав среднюю всех средних, мы получим = 40 мин. И что бы мы ни взяли и качестве предмета выборочного обследования, всегда случайные выборки будут распределяться вокруг генеральной средней.

Сама по себе центральная предельная теорема малопрактична, поскольку произвести все выборки из генеральной совокупности несоизмеримо труднее, чем обследовать всю генеральную совокупность. В нашем примере генеральная совокупность составляет 5 человек, а выборок — 25. Если генеральная совокупность достаточно многочисленна, отдельные выборки остаются единственным средством приближения к генеральной средней. У нас каждая выборка, за исключением одной, показывающей истинное значение 40 мин, характеризуется некоторой ошибкой, и вероятность этой ошибки, равно как и вероятность точного попадания в середину, может быть исчислена путем деления частоты i -й выборки на число всех выборок.

Мы знаем генеральную среднюю в пяти наблюдениях и сейчас имеем возможность рассчитать вероятность «попадания» в среднюю каждого отдельного наблюдения. Это 1/5, или 20%. Вероятность того, что выборка из двух единиц покажет значение, равное генеральной средней, — 1/25 (1/5х1/5), или 4%. Если бы мы производили отбор трех человек из пяти, вероятность построения «точной» выборки равнялась бы 1/125 (1/5 х 1/5х 1/5), или 0,16%. Но в данном случае и количество всех возможных выборок равнялось бы 53 = 125.

Итак, точное «попадание» в генеральную среднюю маловероятно, но следующий шаг заключается в том, чтобы узнать, каково среднее отклонение от выборочной средней. Для этого нам понадобится показатель среднего квадратического отклонения:

где х1 — i-я выборочная средняя, х ср средняя

всех выборочных средних, pi —число наблюдений.

В нашем примере 25 выборок дают различные отклонения от средней, одни из них больше, другие меньше. Спрашивается, какова средняя вариация выборочных значений? Для подсчета μ надо определить расстояние от каждой выборочной средней до «центра» — общей средней, а сумму этих расстояний разделить на количество наблюдений — п. В этом смысл приведенной формулы, которую полезно записать в виде аналитической таблицы, содержащей цифры из нашего условного примера (табл. 5.12).

12-365


Таблица 5.12



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 213; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.255.196 (0.009 с.)