Проверка напряжения при сжатии с изгибом 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Проверка напряжения при сжатии с изгибом



Изгибающий момент, действующий в биссектрисном сечении находится на расстоянии от расчётной оси, равном:

.

Расчетные сопротивления древесины сосны II сорта:

сжатию и изгибу:

растяжению:

.

Здесь 15 МПа и 9 МПа – значения соответствующих расчетных сопротивлений, принимаемые по СП 64.13330.2011.

Радиус инерции сечения:

.

При расчетной длине полурамы , гибкость равна:

.

Для элементов переменного по высоте сечения коэффициент j, учитывающий продольный изгиб, дополнительно умножаем на коэффициент :

,

где b - отношение высоты сечения опоры к максимальной высоте сечения гнутой части:

.

Коэффициент j определяем по формуле:

где – коэффициент, принимаемый для деревянных конструкций.

Произведение

Определяем коэффициент x, учитывающий дополнительный момент от продольной силы вследствие прогиба элемента, по формуле:

,

где − усилию в ключевом шарнире.

Изгибающий момент по деформированной схеме:

.

Для криволинейного участка при отношении согласно СП 64.13330.2011 прочность проверяем для наружной и внутренней кромок с введением коэффициентов и к .

;

.

Расчётный момент сопротивления с учетом влияния кривизны:

для внутренней кромки:

;

для наружной кромки:

;

Напряжение по сжатой внутренней кромке определим по формуле:

;

Условие прочности по сжатию выполняется.

;

Недонапряжение составляет:

;

Условие прочности по растяжению выполняется.

Принимаем:

Проверка устойчивости плоской формы деформирования рамы

Рама закреплена из плоскости:

- в покрытии по наружной кромке прогонами по ригелю;

- по наружной кромке стойки стеновыми панелями. Внутренняя кромка рамы не закреплена.

Точку перегиба моментов, т.е. координаты точки с нулевым моментом находим из уравнения моментов, приравнивая его к нулю:

;

;

;

;

; .

Расчетная длинна рамы имеет 2 участка

Первый участок: .

Второй участок: .

Таким образом, проверку устойчивости плоской фермы деформирования производим для 2-х участков.

Проверка устойчивости производится по формуле:

, где:

– продольная сила на криволинейном участке рамы;

– изгибаемый момент, определяемый из расчета по деформированной схеме;

– коэффициент продольного изгиба, определяемый по СП 64.13330.2011;

– коэффициент, учитывающий наличие закреплений растянутой зоны из плоскости

деформирования (в нашем случае n = 2, т.к. на данном участке нет закреплений растянутой зоны);

– коэффициент, определяемый по СП 64.13330.2011.

1) Для сжатого участка находим максимальную высоту сечения из соотношения:

.

.

Найдем значение коэффициента по формуле:

– коэффициент, зависящий от формы эпюры изгибающих моментов на участке определяемый по СП 64.13330.2011 ( в данном случае равен 1,13).


Находим максимальный момент и соответствующую продольную силу на расчетной длине , при этом горизонтальная проекция этой длины будет равна

Максимальный момент будет в сечении с координатами: и ;

Момент по деформируемой схеме:

, ,

тогда , .

Так как , принимаем , где .

Коэффициент для ,

тогда,

,

Подставим , .

При расчете элементов переменного по высоте сечения, не имеющих закреплений из плоскости по растянутой кромке или при числе закреплений , коэффициенты и – следует дополнительно умножать, соответственно, на коэффициенты и в плоскости :

.

Тогда

Подставим значения в формулу:

и получим:

2) Производим проверку устойчивости плоскости формы деформирования растянутой зоны на расчетной длине , где имеются закрепления растянутой зоны.

Гибкость:

;

Коэффициент :

;

Коэффициент :

.

При закреплении растянутой кромки рамы из плоскости, коэффициент необходимо умножать на коэффициент , а – на коэффициент .

Поскольку верхняя кромка рамы раскреплена прогонами и число закреплений ,

величину следует принимать равной 1, тогда:

;

, где

, – количество закрепленных точек растянутой кромки.

;

.

Тогда расчетные значения коэффициентов и примут следующий вид:

Подставляя эти значения в исходную формулу проверки устойчивости плоской формы деформирования, получим:

,

 

Конструкции и расчет узлов

Опорный узел

Определим усилия, действующие в узле:

продольная сила:

;

поперечная сила:

.

Опорная площадь колонны:

.

При этом, напряжение смятия составляет:

,

где – расчетное сопротивление смятию, которое определяется по СП 64.13330.2011.

Нижняя часть колонны вставляется в стальной сварной башмак, состоящей из диафрагмы, воспринимающей распор, двух боковых пластин, воспринимающих поперечную силу, и стальной плиты – подошвы башмака.

При передаче распора на башмак колонна испытывает сжатие поперек волокон, значение расчетного сопротивления которого определяется по СП 64.13330.2011 и для принятого сорта древесины составляет:

.

Требуемая высота диафрагмы определяется из условия прочности колонны.

.

Принимаем конструктивно высоту диафрагмы .

Рассчитываем опорную вертикальную диафрагму, воспринимающую распор, на изгиб как балку, частично защемленную на опорах, с учетом пластического перераспределения моментов:

Найдем требуемый из условия прочности момент сопротивления сечения. При этом примем, что для устройства башмака применяется сталь с расчетным сопротивлением .

.

Тогда толщина диафрагмы:

.

Принимаем толщину диафрагмы . Боковые пластины принимаем той же толщины в запас прочности.

Предварительно принимаем следующие размеры опорной плиты:

длина опорной плиты:

,

ширина:

включая зазор «с» между боковыми пластинами и рамой по 0,5 см.

Для крепления башмака к фундаменту принимаем анкерные болты диаметром 20 мм, имеющие следующие геометрические характеристики:

;.

Анкерные болты работают на срез от действия распора. Определяем срезывающее усилие:

кН

Напряжение среза определим по формуле:

,

Условие прочности анкерных болтов выполняется.

Коньковый узел

Коньковый узел устраивается путем соединения двух полурам нагельным соединением с помощью накладок.

Максимальная поперечная сила в коньковом узле возникает при несимметричной временной снеговой равномерно-распределенной нагрузке на половине пролета, которая воспринимается парными накладками на болтах.

Поперечная сила в коньковом узле при несимметричной снеговой нагрузке:

,

где – расчетная снеговая нагрузка, вычисленная ранее.

Определяем усилия, на болты, присоединяющие накладки к поясу.

,

где – расстояние между первым рядом болтов в узле;

– расстояние между вторым рядом болтов.

По правилам расстановки нагелей отношение между этими расстояниями может быть или . Мы приняли отношение 1/3

Принимаем диаметр болтов 16 мм и толщину накладок 75 мм.

Несущая способность на один рабочий шов при направлении передаваемого усилия под углом 900 к волокнам находим из условий:

Изгиба болта:

кН

но не более кН

где а – толщина накладки (см)

d – диаметр болта (см)

ka- коэф. зависящий от диаметра болтов и величины угла между направлением усилия и волокнами древесины накладки

Смятия крайних элементов-накладок при угле смятия 900:

кН

Смятие среднего элемента – рамы при угле смятия a=900 – 300 = 600

кН

где с – ширина среднего элемента рамы, равная b (см)

Минимальная несущая способность одного болта на один рабочий шов: Тmin=4,62 кН

Необходимое количество болтов в ближайшем к узлу ряду:

, принимаем 2 болта

Количество болтов в дальнем от узла ряду:

, принимаем 1 болт

Принимаем расстояние между болтами по правилам расстановки СП

l1 ≥ 7*d = 7*1,6 = 11,2 см, принимаем 12 см, тогда расстояние

l2 =3*l1 = 3*12 = 36 см

Ширину накладки принимаем ³ 9,5*d, что равно 152 мм, согласно сортамента по ГОСТ 24454-80*(3) принимаем ширину накладки 175 мм, тогда

- расстояние от края накладки до болтов S2 ³ 3*d = 3*1,6 =4,8 см, принимаем 5 см;

- расстояние между болтами S3 ³ 3,5*d = 3,5*1,6 = 5,6 см, принимаем S3= 175-2*50=75 мм,что больше чем 56 мм

Изгибающий момент в накладках равен:

кНсм

Момент инерции накладки, ослабленной отверстиями диаметром 1,2 см:

Момент сопротивления накладки:

см3

Напряжение в накладках:

где 2 – количество накладок

Rи = 13 МПа –расчетное сопротивление древесины изгибу по табл.3 СНиП

Следовательно, принимаем 2 болта в первом ряду и 1 болт в крайнем ряду.

Проверку боковых накладок на изгиб не выполняем ввиду очевидного запаса прочности.

Используемая литература

  1. Методическое пособие «Примеры расчета распорных конструкций. (Гнутоклеёные рамы и рамы с соединением ригеля и стойки на зубчатый шип)», В.И. Линьков, Е.Т. Серова, А.Ю. Ушаков. МГСУ, Москва 2007г.
  2. Методические указания «Примеры расчета ограждающий конструкций»,

В.И.Линьков, Е.Т. Серова, А.Ю. Ушаков МГСУ, Москва, 2007г.



Поделиться:


Последнее изменение этой страницы: 2016-07-11; просмотров: 250; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.252.23 (0.084 с.)