Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Гаметогенез. Мейоз. Цитологическая и цитогенетическая характеристика. Особенности ово- и сперматогенеза у человека.

Поиск

Процесс образования яйцеклеток в яичниках овогенез, оогенез. Сперматозоиды образуются в семенниках, процесс носит название сперматогенеза. Те и другие клетки образуются по-разному, но есть некоторые общие черты.

Сперматогенез. Морфологически семенник состоит из множества семенных канальцев. Дольчатое строение. Между семенными канальцами – клетки Лейдинга (начинают работу в 12-14 лет) синтезируют тестостерон – развитие вторичных половых признаков. Семенник очень рано становится эндокринным органом, под влиянием андрогенов происходит формирование мужских половых органов. Семенной каналец имеет зоны:

-размножения, -роста,- созревания и формирования.

Существуют одноименные периоды роста. Зона размножения в наружной части семенника. Клетки округлые, цитоплазмы много, ядро большое – сперматогонии. Они размножатся митозом, и семенник увеличивается в размерах до полового созревания, после – делятся только стволовые клетки. Запас клеток не уменьшается и семенник тоже не уменьшается. В зоне размножения 2n2c.следующая фаза – роста. Увеличивается размер ядра, цитоплазмы, идет репликация ДНК (интерфаза 1), клетки – сперматоциты первого порядка 2n4c. Эти клетки вступают в зону формирования и созревания у семенных канальцев. Мейоз состоит из 2 митотических делений, после первого деления n2c, после второго – nc.

Овогенез (яичники). Половые железы закладываются на 2м месяце эмбрионального развития. У человека очень рано закладывается желточный мешок (функция формирования первичных половых клеток, обеспечение питательными веществами). Половые клетки (первичные) мигрируют в развивающуюся половую железу, а желточный мешок дегенерирует. В эмбриогенезе яичники не активны. Формирование женских половых клеток пассивное. Первичные половые клетки – овогонии, они делятся. Формируются овоциты первого порядка. Период деления оканчивается к 7му месяцу эмбриогенеза – 7000000 первичных клеток. 400-500 созревают в течение жизни, остальные невостребованы. Развитие яйцеклеток у человека блокируется в профазе первого мейотического деления (на стадии диплотены). С наступлением половой зрелости овоцит увеличивается в размере, растет и размер желтка. Накапливаются пигменты, происходят биохимические и морфологические изменения. Каждый овоцит окружается мелкими фолликулярными клетками, созревающими в фолликуле. Яйцеклетка, созревая, приближается к периферии. Фолликулярная жидкость окружает её на всех этапах. Фолликул разрывается. Яйцеклетка попадает в брюшную полость. Затем в воронку яйцевода. Продолжение мейоза в 2/3 яйцевода в результате контакта яйцеклетки со сперматозоидом.

При мейозе идет распределение хромосом. В результате 4 ядра. Происходит конъюгация хромосом (за счет высоко повторяющихся последовательностей ДНК в 1ген). Каждое из 4х ядер при гаметогенезе получает только 1 хроматиду из пары. В результате мейоза при сперматогенезе из каждого спермацита первого порядка получаются 4 хроматиды и формируются 4 сперматозоида. Из одного овоцита первого порядка образуются 2 ядра с гаплоидным набором хромосом. Одно из них, с большим количеством цитоплазмы (т.к. при цитокинезе разделение идет неравномерно) и другое – редукционное (направляющее) тельце. При последующем делении образуются яйцеклетка и направляющее тельце. При овогенезе из каждого овоцита формируется 1 яйцеклетка и 3 направляющих тельца, которые дегенерируют и исчезают. В яйцеклетке есть все необходимые запасы питательных веществ. Мейоз – способ распределения хромосом, генов, обеспечивающий их независимую и случайную рекомбинацию. При овогенезе служит для перераспределения цитоплазмы между клетками. Кроссинговер – способ, осуществляющий сближение и перераспределение генов отдельных гомологичных хромосом.

С 212-218

 

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

· Профаза I — профаза первого деления очень сложная и состоит из 5 стадий:

· Фаза лептотены или лептонемы — конденсация ДНК с образованием хромосом в виде тонких нитей.

· Зиготена или зигонема — конъюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.

· Пахитена или пахинема — кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.

· Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой.

· Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; гомологичные хромосомы остаются соединёнными между собой.

· Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки.

· Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.

· Телофаза I — хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

· Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.

· Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

· Анафаза II — униваленты делятся и хроматиды расходятся к полюсам.

· Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и два так называемых редукционных тельца (абортивные дериваты первого и второго делений).

 

Морфология половых клеток.

Зрелые половые клетки содержат гаплоидный набор хромосом. Созревающие -диплоидный. Имеют ядро, цитоплазму, клеточные органеллы. Несмотря на это, строение мужских и женских половых клеток неодинаково. Это объясняется различными функциями. Функции сперматозоида – оплодотворение (стимуляция дальнейшего развития яйцеклетки), обеспечение генетической информацией мужского организма. Все сперматозоиды имеют жгутики, подвижны, небольшого размера (50-90мкм у человека). Состоят из головки, шейки, средней части и хвостика. Головка -5мкм, шейка – 5. головка сперматозоида почти полностью занята ядром, цитоплазмы мало, она в жидкокристаллическом состоянии (защита от вредных явлений – ионизирующего излучения). Находится по периферии ядра. На конце головки – акросома с видоизмененным комплексом Гольджи. Ферменты: гиалуронидаза, муциназа. В плазматической мембране – проакрозин, который превращается в акрозин, проходя по половым путям самки (происходит отщепление ингибитора). Функция акрозина – отщепление фолликулярных клеток, отщепление блестящей оболочки. Шейка содержит пару центриолей. Микротрубочки одной из них удлиняются, образуется основная нить хвостика. В шейке много митохондрий, расположенных по спирали. Органеллы движения – жгутики, способны к биению только при смешивании с секретом. Предстательной железы при семяизвержении. При нарушении функций предстательной железы – мужская стерильность.

Яйцеклетка. Функции: передает зародышу половину его будущего хромосомного набора; во время оплодотворения яйцеклетка приносит гораздо больше цитоплазмы; яйцеклетка снабжает зародыш пищевыми запасами до начала его собственного питания.

Размеры яйцеклеток много больше размеров сперматозоидов(130-150 мкм у человека). В зрелой яйцеклетке запасаются все материалы, которые обеспечивают начальные стадии развития зародыша. Если сперматозоид, созревая, старается избавиться от цитоплазмы, яйцеклетка, наоборот, стремится увеличить ее количество. Есть рибосомы, рРНК, т-РНК, морфогенетические факторы. Многие белки синтезируются в печени, жировом теле, а затем транспортируются в яйцеклетку. Яйцеклетка имеет плазматическую мембрану. Во время оплодотворения плазматическая мембрана контролирует поступление многих ионов (например, натрия). К ней прилегает желточная оболочка (гликопротеины – специфическое прикрепление сперматозоида своего вида к соответствующей яйцеклетке), часто прозрачна, яйцеклетка окружена слоем клеток лучистого яйца – фолликулярными питающими клетками. Для оплодотворения сперматозоид должен пройти сквозь все оболочки. Наследственный материал, приносимый яйцеклеткой и сперматозоидом по размеру одинаков

 

 

32.Оплодотворение, его фазы, биологическая сущность. Партеногенез. Типы определения пола.

 

Зрелая яйцеклетка может быть оплодотворена на протяжении небольшого отрезка времени(12-24 часа после овуляции у человека, у рыб и амфибий - через несколько минут после откладки). После овуляции яйцеклетка претерпевает серьезные клеточные изменения. Для оплодотворения очень важен срок жизни. Совокупность изменений яйцеклетки после овуляции – старение яйцеклетки, через 24 часа – перезрелая яйцеклетка – оплодотворение невозможно. Если происходит оплодотворение в данном случае, то невозможна имплантация. Возможны аборты. Ежемесячно созревает только 1 яйцеклетка.

Жизнеспособность сперматозоидов зависит от многих факторов. В щелочной среде они активны, но быстро погибают в кислой среде. Путь от влагалища до 2/3 яйцевода составляет 2-3 часа. В верхней трети влагалища происходит подщелачивание среды (т. к. кислотность высокая) из-за семенной жидкости. В матку проникают только сперматозоиды. Они сохраняют большую подвижность при пониженной температуре. Сперма собирается и замораживается в жидком азоте. Жидко кристаллическая цитоплазма не позволяет образовываться большим кристаллам льда (использование в племенном деле, банки спермы людей). В процессе оплодотворения выделяют 3 этапа.

1) активация яйцеклетки

2) проникновение сперматозоида в яйцеклетку

3) слияние ядер.

В ходе оплодотворения сперматозоид преодолевает все оболочки яйцеклетки. Как только происходит контакт сперматозоида с яйцеклеткой – завершается мейоз яйцеклетки, в т.ч. она выделяет фертилизин. Сперматозоид выделяет антифертилизин – происходит приклеивание. В это время акрозин разрушает оболочки, выделяются ферменты. У человека сперматозоид проникает по-разному: либо только головка, либо шейка и головка. После контакта сперматозоида и яйцеклетки у моноспермных в течение 1-3 минут происходит кортикальная реакция – образуется оболочка оплодотворения. Если несколько сперматозоидов – гибель клетки. Ядро сперматозоида набухает, разрыхляется, образуется мужской пронуклеус. Ядро яйцеклетки превращается в женский пронуклеус. Идет репликация ДНК. Пронуклеусы идут к центру, ядерные оболочки исчезают, происходит слияние пронуклеусов (кариогамия), образуется зигота(2n4c). Через сутки начинается дробление. Возможно развитие эмбриона без участия мужской гаметы (механическое, тепловое, химическое воздействие) – партеногенез. Гиногенез – развитие из яйцеклетки. При гиногенезе сперматозоид проникает и погибает (только женские организмы, т.к. только женский геном). Андрогенез – развитие из сперматозоида. При нм ядро яйцеклетки погибает (только мужской геном). Очень быстро такой геном перерождается в злокачественную опухоль хорионэпителиому.

Типы определения пола.

- прогамный. Пол будущего организма определяется в ходе гаметогенеза у родительских особей.

сингамный. Пол будущего организма определяется в момент слияния половых клеток.

- эпигамный. Пол будущего организма определяется в процессе онтогенеза. У человека имеет место переопределение пола (при патологии) – хотя истинного нет

Партеногенез- развитие без оплодотворения. В случае естественного партеногенеза развитие идет на основе цитоплазмы и пронуклеуса яйцеклетки. Естественный партеногенез- явление редкое, обнаружен у пчел, ос, ряда чешуекрылых. Искусственный партеногенез возможен, по-видимому, у всех животных. На тутовом шелкопряде было показано, что с помощью искусственного партеногенеза можно регулировать соотношение мужского и женского пола в популяции. В активированных яйцах используется информация только женского пронуклеуса - гиногенез. При искусственном партеногенезе можно удалить женский пронуклеус, тогда развитие осуществится за счет мужских пронуклеусов - андрогенез

 

33.Предмет, задачи, методы генетики. История развития генетики. Роль отечественных ученых (Н. И. Вавилов, Н. К. Кольцов, А. С. Серебровский, С. С. Четвериков) в развитии генетики.

Генетика человека – основа медицинской генетики. Человек – удобный генетический объект. У человека лучше, чем у других видов изучены биохимические, иммунологические, физиологические и другие реакции, а эти признаки детерминированы генами.

98-99% заболеваний возникают в результате поражения генетического материала.

1-2% - травмы и ожоги.

Генетика человека – наука о наследственно обусловленных различиях людей и о нарушениях генетического материала.

40-50 из 1000 детей с наследственной или врожденной патологией в РФ.

40%смертности, инвалидности из-за наследственных заболеваний.

30-40 коек в больницах – дети с врожденной или наследственной патологией.

Более половины таких детей погибают после рождения или получают хронические заболевания, остальные постоянно нуждаются в наблюдении врачей.

11-16% больных в педиатрических отделениях имеют генетические заболевания. Наследственные заболевания лечатся.

8,5% детей умирают от заболеваний, связанных с генными мутациями.

2,5% умирают от хромосомных (т.к. их мало рождается).

31% умирают от «отягощенности наследственных признаков».

42% умирают от наследственных заболеваний.

17% - от неизвестной патологии.

Большой процент больных наследственными патологиями в гематологических клиниках (до 40%)

16% - в детской нефрологии.

50% - детская слепота и инвалидность.

50% - нарушения слуха и инвалидность

наследование гипертонии у 60%(мультифакториальные, моногенные).

В РФ созданы генетические центры(90). В США их – 6, и они очень специализированы. Там проводят биохимические исследования.

Тяжелые формы наследственной патологии – 1-2%

1966 год – американский ученый Майкьюсик выявил 1487 наследственных признаков.

2005 год – 6678

Из них – аутосомно-доминантных – 4458 Аутосомно-рецессивных – 1730

Х-сцепленных – 421 У-сцепленных – 19 Митохондриальных – 66.

Составлен каталог наследственных признаков человека, который постоянно пополняется. Среди Х-сцепленных – ломкость Х хромосомы (снижение умственных способностей). Синтез митохондриальных белков под двойным контролем. Нарушается ДНК в митохондрии, нарушается синтез АТФ – сердечно-сосудистые заболевания. Митохондриальные = материнские болезни. Большое значение имеют болезни пероксисом (образованы округлым телами с простой мембраной, в которых есть кристаллический белок Д=0,3-0,1 мкм, возникают из ЭПР). Они ферментативно катализируют расщепление перекиси кислорода на воду и кислород под действием фермента – каталазы. Наследственные нарушения пероксисомного окисления лежат в основе заболеваний ЦНС, поражения органов зрения, печени, аномалии скелета. Известно 11 таких заболеваний. Особая группа болезней – лизосомальные болезни накопления – 15 заболеваний. Накопление токсичных продуктов в клетке. Число наследственных заболеваний возрастает, т.к. окружающая среда ухудшается, улучшается диагностика, происходит выхаживание больных детей, появляются чужеродные токсические химические соединения, происходит рост знаний.

В медицинском ВУЗе существуют обязательные программы медицинской генетики.

 



Поделиться:


Последнее изменение этой страницы: 2016-07-11; просмотров: 1430; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.239.111 (0.013 с.)