Педосфера и зона минерального питания растений. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Педосфера и зона минерального питания растений.



Педосфера. В зону минерального питания растений (ЗМП) входит поверхностный комплекс пород литосферы, ограниченный снизу водоупором в основании грунтовых вод, а в кровле - почвами. Характерной чертой ее являются геохимические и биогеохимические реакции, обеспечивающие перевод природных минеральных веществ в формы, доступные для питания растений.

Почвенный покров - это совокупное порождение химических взаимодействий и превращений косного и живого вещества на суше, это средоточие химических и биологических процессов. Минеральная часть почв сложена тонкодисперсными (до коллоидальных) каркасными и листовыми силикатами и аморфным веществом. Существенной составной частью их является органическое вещество - отмершие органические ткани растений и животных, включая белки, углеводы, липиды, пигменты и прочие. В почвах присутствуют почвенные растворы и газовые фазы. Растворы разнообразны и среди них важнейшее значение имеют гумусовые кислоты - гуминовые и фульвовые.

Гуминовые кислоты менее обогащены кислородом по отношению к фульвовым (32-38 мас.% против 45-50%). Они существенно богаче углеродом (46-62 мас.% вместо 36-44%). Те и другие содержат близкие количества водорода (3-5 мас.%), азота (3-5 мас.%), а также серы и фосфора. В гумусовые кислоты входят также катионы различных металлов, которые необходимы для нормальной жизнедеятельности органики почв.

Глубина гумификации почв зависит от климатической зональности их проявления, с учетом их биологической активности и степени насыщенности почв основаниями. Гумусное состояние почв представлено приведенным выше зонально-генетическим рядом.

Отмирание органики приводит к следующим почвенным процессам: а) разложению и образованию высокомолекулярных продуктов; б) кислотообразованию (гуминовые, фульвовые и др. соединения); в) солеобразованию и сорбции (в связи с окислительным расщеплением); г) глубоким окислениям с разрывом прежних химических связей и образованием простых продуктов распада - Н 2О и СО2. В почвах идет гидролиз и окисление гумусовых кислот. Большое значение здесь имеет состав подземной атмосферы.

Кислород ответственен за процессы миграции и концентрации элементов с переменной валентностью. При дегазации земных недр в горизонт корнеобитания происходит дополнительное поступление двуокиси углерода и углеводородов. Последние окисляются в углекислоту, выделяя тепло и меняя гидрогеохимию среды. Обогащение почв СО2 способствует пышному развитию растительности.

На гидрохимию обстановки ЗМП влияют поровые воды, содержащие водорастворимые соли. Увеличение вниз по разрезу хлоридов Na и Mg свидетельствует о влиянии расположенных близко к земной поверхности грунтовых вод, а появление еще и хлоридов Са - о разгрузке минерализованных растворов глубоких вод.

Еще более существенно содержание в почвах комплекса обменных катионов – Са2+, Mg2+, K+, Na+, H+. Поэтому почвы часто классифицируют по катионно-анионному составу почвенных растворов. По этому критерию они подразделяются на очень кислые, сильно-, средне- и слабокислые, околонейтральные, а также слабо-, средне- и сильнощелочные.

В появлении различных минеральных соединений значительна роль водородных связей и электростатических сил. Из элементоорганических соединений заметны хелатные структуры.

 

18. Характер и особенности гидро-литосферного обмена веществ. Цунами как экологический фактор.

 

Обмен механическими компонентами. По существу, здесь мы имеем дело с геоморфологическими процессами обмена веществ, с тем, что Ю.П. Селиверстов называет экогеоморфологией. По его мнению, эта наука - "Изучение влияния изменяющихся рельефообразующих процессов и создаваемых ими феноменов на жизнедеятельность организмов и, прежде всего, человека". При этом ландшафтные различия местностей определяются совокупным воздействием литогенного основания и биокосной составляющей, представленной почвенно-растительными ассоциациями с составляющими живыми организмами.

Взаимодействие литосферы с атмосферой, гидросферой и биосферой происходит в рамках глобального круговорота вещества. Этот цикл в пределах суши может быть отражен следующим образом (Голубев, 1999):

M=S+D+V+I+А-G-W-B-F+C.

Здесь М - изменение массы всего выделяемого объема суши; S - сток наносов с суши в океан; D - сток растворенных веществ уносимых с суши в океан; V - баланс вещества приносимого и уносимого ветром с суши и на сушу; I - вынос вещества в океан покровными ледниками; А - абразия вещества с выносом его в море; G - аккумуляция продуктов вулканической деятельности на суше; W - связывание газообразного вещества атмосферы при процессах выветривания; В - биогенная аккумуляция вещества; F - приток вещества из космоса и потери его в космическое пространство; С - сжигание минерального топлива человеком.

Баланс минерального вещества суши мира распределяется следующим образом (млрд. т):

Расход

Твердый сток (S) 20

Сток растворенных веществ (D) 3

Вынос ветром (V) 3

Вынос ледниками (I) 2

Вынос за счет абразии (А) 1

Сжигание горючих минеральных ископаемых (С) 6

Всего 35

Приход

Накопление продуктов вулканической деятельности (G) 1-2

Увеличение массы суши при процессах выветривания (W) 1

Биогенная аккумуляция (В) 1

Всего 4

Основную роль в сносе вещества с континентов играют текучие воды. Загрязненный речной сток составляет 4×104 км3/год. Создается 13-58 биллионов тонн осадочного материала. 90% веществ, выносимых с суши, оседает в пределах мелководий.

Анализ стока наносов в 3600 реках мира, проведенный А.П. Дедковым и В.Т. Мозжериным (1984), показывает на значительное их увеличение в связи с антропогенной деятельностью.

Обмен химическими компонентами. Широчайшее развитие вулканических и гидротермальных сооружений на морском дне заставляет коренным образом пересматривать взгляды на роль и масштабы подобных воздействий на состав и соленость морских вод.

Характерным в этом отношении является случай мелководного донного извержения одного из Карымских вулканов в кальдере Академии Наук на Камчатке в 1996 г. Оно длилось всего менее суток, но по удельному выносу вещества и энергии было весьма интенсивным, а по воздействию на окружающую среду даже катастрофичным. Здесь в озере и вытекающей из него р. Карымской погибла вся биота. Произошло мгновенное закисление вод и насыщение их вулканическими газами. Еще 20 дней после извержения - 2.01.1996 г. температура вод была около 25 °С, тогда как перед извержением озеро было покрыто льдом. Извержение привело к резкому изменению солевого состава воды. Пресное озеро превратилось в бассейн с кислой водой хлоридно-сульфатного кальциево-натриевого состава.

Гальмиролиз. Взаимодействие гидросферы с литосферой проявляется также и в подводном выветривании, так называемом гальмиролизе. Осуществляется этот процесс на дне водоемов в результате взаимодействия соленых вод и горных пород. Ничего принципиально отличного от наземного выветривания здесь нет: в морской воде находятся те же самые агенты выветривания, но в иных соотношениях, и темп выветривания резко замедлен.

Подводному выветриванию подвергаются преимущественно породы, не перекрытые рыхлыми осадками. Это районы срединноокеанических хребтов, рифов, подводные вулканические горы, океанические впадины.

Выделяется 4 стадии изменения основных горных пород - базальтов, извергающихся преимущественно в осевых частях срединноокеанических хребтов:

1) консолидация базальтов - изменение базальтов в температурной вилке от изливающегося расплава до температуры океанических вод;

2) собственно гальмиролиз - холодный контакт с морской водой на поверхности дна;

3) активное окисление - изменение базальтов, происходящее не на поверхности дна, а в базальтовом фундаменте;

4) гидротермальных изменений - дальнейшего преобразования базальтов при погружении в глубину и разогреве в тепловом поле геодинамически активных разломов.

В результате гальмиролиза минералообразование сказывается в появлении пленки гидроокислов железа, марганца, филлипсита, смектитов (глинистых минералов группы монтмориллонита). Базальты поглащают К из морской воды и теряют часть Са и SiO2. На стадии активного окисления под влиянием разогретой морской воды (в условиях повышенных температур) продолжается интенсивное окисление и гидратация минералов вдоль трещин с образованием гидроокислов Fe, Mn, смектитов, филлипсита. Глубина активного окисления около 300 м, температурные условия - до 50-80 С.

Цунами. Сейсмогенные морские волны - цунами - отличаются по своим динамичным характеристикам от всех других волн. По длине волны они значительно превосходят все морские волны, расстояние между гребнями у которых обычно менее 100 м; у цунами же оно достигает 100 км. В глубоководной части океана скорость цунами может превышать 700 км/ч. На мелководье фронт волны искривляется за счет гашения скорости на мелких пляжах и волны проникают в бухты. С приближением цунами морское побережье может вначале оголиться. Так называемый бор - водяная стена при высоком приливе в заливе или устье реки может достигать 20 м и более. Цунами вызываются землетрясениями (моретрясениями), но могут быть в отдельных случаях обуславливаться и крупными сейсмогенными оползнями.

В открытом море высота цунами обычно менее 1 м и при наблюдениях с кораблей, находящихся в море, ее нельзя обнаружить. Скорость волны уменьшается с уменьшением глубины моря

v=Ö`gd,

где g - ускорение силы тяжести (980 см/с2), d - глубина вод.

Поэтому скорость распространения волн цунами в средней части Тихого океана (глубина до 5 км) не превышает 700 км/ч. На мелководье скорость резко замедляется, но во много раз возрастает амплитуда волны (до 25 м).

От цунами во время знаменитого Лиссабонского землетрясения 1.XI. 1755 г. погибло до 60 тыс. человек из 235 тыс. проживавших тогда в городе. Высота волн была, по рассказам, на 5 м выше самого максимального уровня прилива. Волны наблюдались по всему Атлантическому океану.

 



Поделиться:


Последнее изменение этой страницы: 2016-06-26; просмотров: 598; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.183.14 (0.011 с.)