Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дефекты кристаллических решеток и их влияние на свойства материаловСодержание книги
Поиск на нашем сайте . Идеальная кристаллическая решетка представляет собой многократное повторение элементарных кристаллических ячеек. Для реального металла характерно наличие большого количества дефектов строения, нарушающих периодичность расположения атомов в кристаллической решетке. Эти дефекты оказывают существенное влияние на свойства материала. Различают три типа дефектов кристаллического строения: точечные, линейные и поверхностные.1. Точечные дефекты характеризуются малыми размерами во всех трех измерениях. Величина их не превышает нескольких атомных диаметров. К точечным дефектам относятся: а) вакансия (свободные места в узлах кристаллической решетки)б) замещающий атомв) внедренный атомТочечные дефекты приводят к локальным изменениям межатомных расстояний и, следовательно, к искажениям кристаллической решетки. При этом увеличивается сопротивление решетки дальнейшему смещению атомов, что способствует некоторому упрочнению кристаллов и повышает их электросопротивление. 2. Линейные дефекты (лишняя полуплоскость) характеризуются малыми размерами в двух измерениях, но имеют значительную протяженность в третьем измерении. Наиболее важный вид линейных дефектов — дислокации. Вблизи линии дислокации атомы смещены со своих мест и кристаллическая решетка искажена, что вызывает образование поля напряжений: выше линии дислокации решетка сжата, а ниже растянута. Дислокации образуются уже при кристаллизации металлов, а также в ходе пластической деформации и фазовых превращений. Плотность дислокаций может достигать большой величины. 3. Поверхностые дефекты (возникают, когда кристаллизация идет в замкнутом объеме, где кристаллы сближаются и врастают друг в друга) вопрос 6 Типы связей: ионная, ковалентная, металлическая, вандервальсовская. Зависимость материалов от типа связей. 1) ионная Ионная связь – частный случай ковалентной, когда образовавшаяся электронная пара полностью принадлежит более электроотрицательному атому, становящемуся анионом. Основой для выделения этой связи в отдельный тип служит то обстоятельство, что соединения с такой связью можно описывать в электростатическом приближении, считая ионную связь обусловленной притяжением положительных и отрицательных ионов. Взаимодействие ионов противоположного знака не зависит от направления, а кулоновские силы не обладают свойством насыщености. Поэтому каждый ион в ионном соединении притягивает такое число ионов противоположного знака, чтобы образовалась кристаллическая решетка ионного типа. В ионном кристалле нет молекул. Каждый ион окружен определенным числом ионов другого знака (координационное число иона). Ионные пары могут существовать в газообразном состоянии в виде полярных молекул.Распространенные строительные материалы этого типа – гипс и ангидрит – имеют невысокую прочность и твердость, они неводостойки 2) ковалентная Ковалентная связь – наиболее общий вид химической связи, возникающий за счет обобществления электронной пары посредством обменного механизма, когда каждый из взаимодействующих атомов поставляет по одному электрону, или по донорно-акцепторному механизму, если электронная пара передается в общее пользование одним атомом (донором) другому атому (акцептору). Такие материалы отличаются очень высокой механической прочностью и твердостью, они весьма тугоплавки. 3) металлическая Металлическая связь возникает в результате частичной делокализации валентных электронов, которые достаточно свободно движутся в решетке металлов, электростатически взаимодействуя с положительно заряженными ионами. Силы связи не локализованы и не направлены, а делокализированные электроны обусловливают высокую тепло- и электропроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей. 4) вандервальсовская Наиболее универсальный вид межмолекулярной связи, обусловлен дисперсионными силами (индуцированный диполь – индуцированный диполь), индукционным взаимодействием (постоянный диполь – индуцированный диполь) и ориентационным взаимодействием (постоянный диполь – постоянный диполь). Вещества, обладающие вандервальсовской связью, - это газы. Они всегда стремятся занять доступный объем, легко сжимаемы и обладают относительно небольшой плотностью Вопрос 7 Способы формирования структуры веществ и материалов. К структурообразующим элементам относится следующее. 1. Элементарные частицы – это мельчайшие частицы материи: фотоны, электроны, позитроны, мюзоны, нейтрино, протоны, нейтроны, антипротоны, антинейтроны, гипероны. Между ними действуют силы различной интенсивности и радиуса действия: сильные – электромагнитные и слабые – гравитационные. 2. Атомы –это сложные образования, построенные из элементарных частиц. Свойства атома зависят от заряда ядра и строения электронных оболочек (орбиталей), точнее электронных облаков, отличающихся размером и формой. Атомы всех элементов могут соединяться друг с другом или другими атомами, образуя следующие частицы: ионы, свободные радикалы, молекулы. 3. Ионы –образуются из атомов или молекул при отрыве и удалении электронов (ион “+”) или при их присоединении (ион “-”) NaCl «Na+ + Cl-. 4. Свободные радикалы – это осколки молекул, высокоактивные неустойчивые частицы, возникающие при распаде молекул с ковалентной связью между атомами и обладающие неспаренными электронами. 5. Молекулы –наименьшие частицы индивидуального вещества, способные к самостоятельному существованию, состоящие из одинаковых или различных атомов и обладающие основными свойствами. Молекулы рассматривают как "многоатомный атом", в котором электроны находятся на молекулярных орбитах, охватывающих все ядра атомов в молекуле, и молекулярные орбитали занимают весь объем молекулы. В целом это относительно устойчивое электрически нейтральное образование. 6. Комплексные соединения и комплексные ионы – это соединения сложного состава, у которых можно выделить центральный атом (комплексообразователь) и непосредственно связанные с ним молекулы или ионы (лиганды) Ka [Fe+ + + (CN)6 «3K+ + [Fe (CN)6] - - - ; [Cu (NH3)4] SO4 «Cu+ + (NH3) + SO4- - . 7. Элементарные кристаллические решетки* (ячейки) –простейшие структурные единицы кристалла. 8. Коллоидные частицы – это частицы твердых, жидких веществ размером 109–10-7 м. 9. Дисперсные частицы – это частицы твердых и жидких веществ размером 10-7–10-6 м. 10. Углеводороды с молекулярной массой < 5000 – масла, смолы, асфальты. 11. Углеводороды с молекулярной массой > 5000 – олигомеры, полимеры (-CH2-CH2-)n и др. 12. Кристаллы, кристаллиты и зерна – твердые тела, имеющие упорядоченное взаимное расположение образующих их частиц – атомов, ионов, молекул. Кристаллиты (зерна) имеют искаженную кристаллическую решетку, неправильную форму кристалла, без характерной кристаллической огранки. К ним относятся дендриты, кристаллические зерна металлических слитков, горных пород, минералов. 13. Твердые частицы – частицы крупных размеров (> 3Ч 10-4 м). 14. Поры, пустоты и т.д. Этот список можно продолжить. Важно отметить, что в формировании материала на более низких уровнях принимают участие наполнители, заполнители, добавки, которые, с одной стороны, сформированы перечисленными структурообразующими элементами, а с другой – сами играют огромную роль. Таким образом, строение материала характеризуется многоступенчатостью, многообразием структурных элементов и уровней, форм связи между структурообразующими одного и различных уровней. Структурообразующие элементы имеют различное строение, форму, размеры, по-разному взаимодействуют между собою и располагаются в пространстве, обусловливая тем самым структуру материала, его свойства и, как следствие, области его применения. Поэтому структуру материала изучают на различных уровнях. Величина и число уровней определяются точностью существующих методов исследований и изучаемыми свойствами. Вопрос 8
|
||
|
Последнее изменение этой страницы: 2016-06-26; просмотров: 416; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.27 (0.009 с.) |