Сети с нейтралью заземленной через дугогасящий реактор



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Сети с нейтралью заземленной через дугогасящий реактор



 

Сети с заземлением нейтрали через дугогасящий реактор решают одну проблему сетей с изолированной нейтралью, а именно, исключить или снизить вероятность появления опасных по величине дуговых перенапряжений. Это возможно в том случае, если ток в месте замыкания снизить. до такой величины, чтобы исключить или снизить вероятность появления перемежающейся дуги. В идеале, лучше ток в месте замыкания снизить до нуля. Тогда вообще не будет тока в месте замыкания, а следовательно, и электрической дуги.

Режим заземления нейтрали через дугогасящий реактор используется в России с начала 60 – х годов 20-го века. В соответствии с ПУЭ и ПТЭЭП с нейтралью, заземленной через дугогасящий реактор в России работают сети 6-35 кВ, в которых токи однофазного замыкания на землю превышают значения, допустимые для сетей с изолированной нейтралью. Это в основном кабельные сети больших и средних городов и крупных промышленных предприятий. Использование компенсации возможно и при токах, меньших, чем это требуется по ПУЭ и ПТЭЭП, например, в сетях насосных и компрессорных станций.

Идея сетей с нейтралью, заземленной через дугогасящий реактор – в снижении тока в месте повреждения путем компенсации емкостного тока замыкания индуктивным током от специальной катушки индуктивности. По имени разработчика ее в первые годы называли катушкой Петерсена. Для снижения токов в месте замыкания в нейтраль одного из трансформаторов сети включается реактор, который называют дугогасящим реактором (ДГР) или дугогасящей катушкой (ДГК).

Дугогасящий реактор подключают к сети с помощью специального силового трансформатора (Т-ДГР на рисунке 7.17) с соединением обмоток звезда-треугольник. Нагрузка к трансформатору не подключается.

Рисунок 7.17 – Схема подключения ДГР

В нормальном режиме при симметричной сети напряжение нейтрали трансформатора Т-ДГР по отношению к земле равно нулю и по ДГР ток не протекает. В случае повреждения изоляции одной из фаз электрической сети и возникновения замыкания на землю, образуется замкнутый контур, содержащий ДГР, фазную обмотку трансформатора, поврежденную фазу и место повреждения (рисунок 7.18).

Рисунок 7.18 – Однофазное замыкание на землю в сети с компенсированной нейтралью

 

Напряжение поврежденной фазы при однофазных замыканиях на землю во всей сети снижается до нуля (рисунок 7.15). Например, при замыкании на землю фазы А снизится до нуля напряжение UА, и исчезнет напряжение в обмотке фазы А трансформатора Т-ДГР. При этом на нейтрали трансформатора Т-ДГР появится напряжение (смещение нейтрали) равное по величине фазному напряжению фазы А и противоположно ему направленное. Напряжение нейтрали по отношению к земле становится равным UNЗ = -UА

Под действием этого напряжения через ДГР и место повреждения будет протекать ток, который носит индуктивный характер. Пренебрегая сопротивление трансформатора Т-ДГР и продольными сопротивлениями линии для тока через ДГР, вследствие их малости, можно записать:

(7.9)

В результате в месте повреждения будет протекать сумма двух токов: индуктивного IL и емкостного Ic, обусловленного суммарной емкостью всей сети. При этом ток в месте повреждения будет равен векторной сумме токов IL и Ic,

(7.10)

 

где IС - емкостной ток замыкания на землю, для которого в соответствии с выражением (7.5) можно записать:

(7.11)

Рассмотрим векторную диаграмму токов (рисунок 7.19).

 

Рисунок 7.19 – Векторная диаграмма токов при однофазном замыкании на землю в сети с компенсированной нейтралью

Ток IL отстает по фазе от напряжения UNЗ на 900. Так как токи IL и Ic сдвинуты по фазе на 180°, то ток в месте замыкания будет равен разности их абсолютных значений

(7.12)

Конструкция ДГР предусматривает возможность регулирования величины индуктивности. Регулирование выполняется либо изменением числа витков обмотки, либо изменение величины воздушного зазора в сердечнике. Так как реактор ДГР управляемый, то можно изменять величину индуктивного тока. Установив индуктивный ток равным емкостному току (IL=Ic), можно снизить ток замыкания до нуля IЗ=0. Такая настройка реактора называется резонансной. При этом сеть называют резонансно - скомпенсированной. Именно такая резонансная настройка ДГК рекомендуется в ПУЭ и ПЭЭП.

Однако компенсируется только емкостной ток частотой 50 Гц. Поэтому в месте замыкания протекают небольшой активный ток, обусловленный активным сопротивление ДГР, и могут протекать токи высших гармоник.

В процессе работы сети возможно изменение схемы вследствие включения или отключения присоединений. Такие изменения приводят к изменению емкостного тока. Поэтому в процессе работы резонансная настройка может нарушаться. Для ее поддержания необходима автоматическая настройка ДГР. Но ее реализация достаточно сложная. Чаще используют ручную настройку по расчетному значению емкостного тока. При этом возможно нарушение резонансной настройки. Степень расстройки компенсации характеризуется коэффициентом:

Правильно используемая компенсация емкостных токов в сетях имеет следующие преиму­щества:

- уменьшается ток через место повреждения до минимальных зна­чений (в пределе до активных составляющих и высших гармоник), при этом снижается вероятность появления перемежающейся дуги, повышается вероятность самопогашения дуги и «заплывания» места повреждения, снижается напряжение шага при растекании токов в земле;

- при степени расстройки компенсации до 5 % ограничиваются перенапряжения, возникающие при дуговых замы­каниях на землю, до значений (2,5—2,6) Uф, безопасных для изоляции эксплуатируемого оборудования и линий;

- за счет большой индуктивности ДГР значительно снижается скорость восстанавливающегося напряже­ния поврежденной фазы в месте повреждения после пога­сания перемежающейся дуги; вследствие этого диэлек­трические свойства места повреждения успевают восстановиться, что снижает вероятность повторных зажиганий дуги.

Перечисленные преимущества компенсации проявляются только при резонансной настройке.

Недостатки.

В сетях с резонансно-компенсированной нейтралью решаются проблема снижения токов в месте повреждения, снижение напряжения шага (но полностью не исключается) и снижения луговых перенапряжений. Другие недостатки сетей с изолированной нейтралью остаются справедливыми и для сетей с резонансно - компенсированной нейтралью, в том числе: повышение напряжения неповрежденных фаз до линейного напряжения; и проблема селективной сигнализации и поиска места повреждения.

Таким образом, у сетей с компенсированной нейтралью можно выделить следующие недостатки.

1) Напряжения неповрежденных фаз при однофазном замыкании повышаются до линейного напряжения.

2) Из-за снижения токов в месте повреждения и в поврежденной линии усложняется проблема определения поврежденной линии (селективной сигнализации) и поиска места повреждения. Более того, компенсация емкостного тока исклю­чает возможность использования про­стого принципа выявления поврежденного фидера по величине и направлению тока нулевой последовательности промышленной частоты. Это создает дополнительные проблемы селективной сигнализации и обусловливает при­менение частот, отличных от промышленной.

3) На практике резонансной настройки не получается. Связано это как со сложностью плавного регулирования индуктивного сопротивления ДГР, так и сложностью выбора критерия автоматической настройки в резонанс. Нет удобной автоматической настройки резонанса. Нет удобных способов измерения емкостных токов. Поэтому на практике часто применяют ручное переключение ДГР, основанной на расчетной величине емкостного тока. Отсутствие резонансной настройки на практике снижает положительные эффекты компенсации.

4) Резонансная компенсация требует почти идеальной симметрии сети, иначе в нормальном режиме возможны значительные смещения нейтрали. Если сеть в нормальном режиме, то по методу двух узлов напряжение на нейтрали по отношению к земле будет:

, (7.13)

где - проводимость дугогасящего реактора; .- емкостные проводимости фаз А, В и С по отношению к земле.

Если сеть симметричная, то емкости, а, следовательно, и емкостные проводимости разных фаз равны между собой:

.

При этом

=0,

и напряжение нейтрали относительно земли будет равно нулю: .

Но на практике симметрии сети может не быть. При этом числитель выражения (7.13) не будет равен нулю: .

В то же время знаменатель выражения (7.13) при резонансной настройке будет близок к нулю:

При этом напряжение на нейтрали (смещение нейтрали) может быть достаточно большим и даже больше фазного напряжения, что . Это снижает качество электрической энергии и делает неприемлемым использование ДГР в несимметричных сетях. Практически приемлемой степенью симметрии обладают только КЛ. В воздушной сети из-за естественной несимметрии проводимостей фаз относительно земли для резонансной настройки могут потребоваться мероприятия по симметрированию сети.



Последнее изменение этой страницы: 2016-04-26; просмотров: 2504; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.158.251.104 (0.021 с.)