Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Движение вещества и энергии по пищевым цепямСодержание книги
Поиск на нашем сайте
В экосистемах первичное органическое вещество образуется в процессе фотосинтеза зелеными растениями, поглощающими солнечную энергию. Энергия фотонов преобразуется в энергию химических связей: вода и двуокись углерода, поглощаемая из воздуха или воды, превращаются в сахара с выделением в качестве побочного продукта кислорода:
6Н2О + 6СО2 + Q ® С6Н12О6 + 6О2
Затем из сахаров и минеральных элементов питания, получаемых из почвы или воды, растения синтезируют все сложные вещества, входящие в состав их организма. Помимо растений, использующих для фотосинтеза солнечную энергию, существуют определенные виды бактерий, способных так же синтезировать органические молекулы из двуокиси углерода и воды. Расщепляя некоторые неорганические вещества, богатые внутренней потенциальной энергией (например, сероводород Н2S), эти бактерии используют высвобождающуюся энергию для синтеза органических молекул, - примерно так же, как при фотосинтезе. Этот процесс называют хемосинтезом, т.к. источником энергии служит не свет, а окисление неорганического вещества. Органическое вещество по пищевой (трофической) цепи последовательно передается от одних живых организмов к другим (рис.5):
СО2
Энергия
Продуценты: Первичные консументы: Вторичные консу - растения, отдельные растительноядные жи- менты: плотоядные виды бактерий вотные и т.п. животные и т.п.
Опадание листьев, ги- Отбросы, остатки пищи бель особей трупы животных Р едуценты: бактерии, гри- Минерализация бы и т.п. Дыхание
Рис. 5. Потоки энергии и вещества в пищевой цепи
Растения, создающие первичное органическое вещество (продуценты), расположены в первом звене трофической цепи. Во втором звене располагаются организмы, употребляющие в пищу продуцентов и строящие белки своего тела из белков растений; эти организмы носят название первичные консументы, или растительноядные, или фитофаги. Далее, в третьем звене – вторичные консументы - плотоядные животные, использующие животные белки. Существуют консументы третьего порядка, питающиеся вторичными консументами, а также консументы более высоких порядков в сложных трофических цепях. Во всех звеньях трофической цепи образуются отходы - листья, отмирающие организмы, отбросы и т.д. Эти отходы поступают в отдельное звено - звено редуцентов, состоящее из бактерий, грибов, мелких беспозвоночных и т.д. Они разлагают органические остатки всех трофических уровней до минеральных веществ. При этом выделяются кислород (45%), водород (42%) и до 1,5% воды с кальцием, кремнием, калием и фосфором. Существует еще одно звено, состоящее из организмов, также питающихся мертвыми растительными и животными остатками - звено сапрофагов. Примерами таких организмов являются грифы, земляные черви, раки, термиты, муравьи и т.д. Потоки энергии в пищевой цепи подчиняются з акону однонаправленности потока энергии: энергия, получаемая сообществом (экосистемой) и усваиваемая продуцентами, рассеивается или вместе с их биомассой необратимо передается консументам первого, второго и т.д. порядков, а затем редуцентам с падением потока на каждом из трофических уровней в результате процессов, сопровождающих дыхание. Поскольку в обратный поток (от редуцентов к продуцентам) поступает ничтожное количество изначально вовлеченной энергии (не более 0,25%), говорить о круговороте энергии нельзя.
Круговорот элементов
Все вещества на Земле находятся в биохимическом круговороте - большом (геологическом) и малом (биотическом). В большом круговороте, длящемся миллионы лет, участвуют горные породы, которые выветриваются, сносятся стоками в Мировой океан, образуют напластования и в процессе перемещения морей, океанов, материков могут возвратиться на сушу, где снова подвергаются выветриванию. В малом круговороте, являющемся частью большого, участвуют питательные вещества почвы, вода, углерод, которые используются растениями для построения их тела и жизненных процессов, а затем - на те же задачи животных-консументов. Далее продукты распада всего органического вещества разлагаются почвенной микрофлорой и мезофауной (бактерии, грибы, черви и т.д.) до минеральных компонентов и снова поступают в растения. Этот круговорот называется биогеохимическим циклом.
Круговорот углерода
По распространенности во Вселенной углерод занимает третье место (после водорода и гелия). Предполагается, что при образовании земной коры часть углерода вошла в состав ее глубинных слоев, а другая часть была удержана атмосферой в виде СО. Основная масса углерода в настоящее время сосредоточена в карбонатных отложениях океанского дна (1,3·1016 т), кристаллических породах (1·1016 т), каменном угле и нефти (3,4·1015 т). Этот углерод участвует в большом круговороте. Углерод, содержащийся в растительных (5·1011 т) и животных (5·109 т) тканях, участвует в малом круговороте. Описание круговорота углерода можно начать с молекул СО2, содержащихся в воздухе и воде. В ходе фотосинтеза атомы углерода этого соединения включаются в состав глюкозы и других органических веществ, из которых построены все растительные ткани. Далее они переносятся по пищевым цепям и образуют ткани всех остальных живых организмов экосистемы. При каждом переходе с одного трофического уровня на другой большая часть атомов углерода после расщепления органических молекул поступает в окружающую среду в составе углекислого газа, завершив свой цикл. Схема круговорота углерода изображена на рис.6.
СО2 Фотосинтез
Глюкоза СО2 Растительные ткани продуцентов СО2 СО2 СО2
Сжигание Первичные консументы Вторичные консументы СО2 Редуценты
Рис. 6. Круговорот углерода
Круговорот фосфора
Фосфор входит в состав генов и молекул, переносящих энергию внутри клеток. В различных минералах фосфор содержится в виде неорганического фосфат-иона РО43-. Растения поглощают РО43- из водного раствора и включают в состав различных органических соединений, где фосфор выступает уже в форме органического фосфата. По пищевым цепям он переходит от растений ко всем прочим организмам экосистем (рис. 7):
Фосфоритные разработки, удобрения эрозия почв, выветривание минералов, выделения животных
РО43- Окисление Редуценты
РО43- Накопление в экосистеме
Растения Органический Первичные Вторичные (продуценты) фосфат консументы консументы Окисление Накопление в экосистеме РО43-
Рис. 7. Круговорот фосфора
При каждом переходе часть содержащих фосфор соединений окисляется, и фосфат с выделениями вновь поступает в окружающую среду, откуда снова может поглощаться растениями и начинать новый цикл. Часть фосфора накапливается в экосистеме (в почве, на дне водоемов и т.д.). Круговорот азота сложнее, т.к. включает как газовую (N2), так и минеральную (NH4+, NO3-) фазы. Весьма сложен круговорот кислорода, т.к. в биосфере к нему присоединяется большое количество органических и неорганических веществ, а также водород, с которым он образует воду. С учетом того, что все вещества и элементы на Земле находятся в состоянии постоянного круговорота, можно сформулировать первый основной принцип функционирования экосистем:получение экосистемой ресурсов и избавление от отходов происходят в рамках круговорота всех элементов. Устойчивое функционирование природной экосистемы происходит при постоянном взаимодействии ее элементов, круговороте веществ, передаче информации и энергии (химической, генетической) по цепям-каналам. При этом устойчивость экосистемы обеспечивается обратной связью между ее элементами. Обратная связь заключается в использовании управляющими компонентами экосистемы данных, получаемых от управляемых компонентов, для внесения соответствующих коррективов в процесс функционирования системы (вновь мы видим выполнение уже известного принципа Ле Шателье). В природе существуют нарушения каналов передачи информации, нарушения обратной связи: стихийные бедствия, засухи, наводнения, землетрясения, болезни. В каналах обратной связи появляются помехи, и в зависимости от степени влияния помех устойчивость функционирования экосистем может быть сохранена или исключена. Помехи от человеческой деятельности нарушают экосистемы практически на всем земном шаре. Особенно опасны помехи вследствие прерывания биотического круговорота (застройка городов, гидротехническое строительство, прокладка транспортных коммуникаций, изменение ландшафтов и т.д.).
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 407; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.160.224 (0.007 с.) |