Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Порушення процесу згоряння в карбюраторних двигунахСодержание книги
Поиск на нашем сайте
Детонація В міру поширення фронту полум'я від іскри незгоріла суміш буде нагріватися і стискуватися внаслідок росту тиску при згорянні. У цій частині свіжої суміші можуть створитися умови для ініціювання хімічних реакцій, тобто виникнення вогнища самозапалювання. Самозапалювання цієї частини заряду називається детонацією. Хімічно підготовлена остання частина заряду самозаймається з величезною швидкістю, у результаті чого утвориться ударна хвиля. Детонація - результат різкої зміни швидкості згоряння в зв'язку з надмірним утворенням перекисів в останній частині робочої суміші. У виниклій ударній хвилі тиск і щільність суміші змінюються стрибкоподібно. Хвиля, що має високу температуру, рухається по КЗ і підпалює іншу суміш. Швидкість ударної хвилі вище швидкості звуку: UПЛ = 1500-2500 м/с (при нормальному згорянні UПЛ = 15-20 м/с.) У результаті взаємодії ударної хвилі зі стінками внутріциліндрового простору і відображення її від цих стінок з частотою 5000-7000Гц виникає дзвінкий металевий стукіт такої ж частоти. Віддача тепла при зіткненні ударної хвилі зі стінками виходить надмірної, що приводить до вигоряння металу. Зовнішні ознаки детонації. 1. Крива тиску на індикаторній діаграмі наприкінці процесу згоряння має пилкоподібний вигляд. 2. Характерний металевий звук. 3. Перегрів двигуна, у результаті різко знижує його економічність. 4. Падіння потужності двигуна. 5. Чорний дим на вихлопі. В ударній хвилі при високої температури йдуть реакції дисоціації з утворенням вільного вуглецю С (сажі). Відпрацьовані гази мають колір чорного диму. СО2®С+О2. Фактори, що впливають на виникнення детонації. 1. Хімічний склад палива: а) груповий склад палива - парафіни, олефіни, ароматичні вуглеводи; парафіни детонують більше, ніж олефіни, олефіни більше, ніж нафтени і т.д. б) молекулярна маса. Палива з більшою молекулярною масою детонують сильніше. в) структура молекул. Вуглеводи, що мають нормальну будівлю, детонують сильно, а вуглеводи з розгалуженою структурою детонують слабко. У цілому фізико-хімічні властивості палива оцінюються октановим числом, що вказує на стійкість палива проти детонації. Чим більше октанове число, тим більше стійкість палива проти детонації. Октанове число (ОЧ) показує процентний вміст ізооктану С8Н18 в еталонній суміші з Н-гептаном С7Н16, що детонує так само, як і випробуване паливо при стандартних умовах іспиту на спеціальному двигуні. Для визначення ОЧ автомобільних бензинів прийняті два методи: моторний і дослідницький. У США прийнятий лише дослідницький метод визначення ОЧ палива. Дослідницький метод визначення ОЧ палива враховує роботу двигуна в умовах міського циклу. Октанове число за моторним методом визначають у такий спосіб. Запускають спеціальний двигун на випробуваному паливі. При працюючому двигуні поступово підвищують ступінь стиску до моменту виникнення детонації. Потім, не змінюючи ступеня стиску, двигун переводять на роботу із сумішшю, що складається з ізооктану і Н-гептана. З них підбирають суміш, при якій двигун починає детонувати. Процентний вміст ізооктану в цій суміші - октанове число випробуваного палива. Ізооктан детонує при ε = 7,7 і вище. Його октанове число прийняте за 100. Н-гептан детонує при ε = 2,8 і вище. Його октанове число = 0. У таблиці приведені для різних палив октанові числа, що визначені по двох методах. Видно, що діізобутелен і бензол, а також автомобільні бензини АІ-93 і АІ-98, у залежності від методу іспиту мають різні октанові числа, тобто є чуттєвими до режиму роботи двигуна. Ізооктан є нечуттєвим до детонації, тому його прийняли як еталонне паливо.
2. Ступінь стиску. Її збільшення підвищує тиск, температуру і сприяє детонації. 3. Тип системи охолодження. Двигуни з повітряним охолодженням мають більш високу температуру в камері згоряння і більш схильні до детонації. 4. Частота обертання вала двигуна. З її зростанням зростає швидкість поширення полум'я, у результаті чого в незгорілій суміші не встигають виникнути вогнища самозапалювання (остання частина суміші підпалюється фронтом полум'я, що рухається від свічі) тому схильність двигуна до детонації помітно знижується. 5. Діаметр циліндра. При його збільшенні подовжується шлях, що проходить полум'я, і за час процесу згоряння, ініційованого іскрою, в останніх порціях суміші встигають пройти реакції окислювання, що приводять до ланцюгового вибуху – детонації. Отже, збільшення діаметра циліндра сприяє виникненню детонації. Виникненню детонації сприяють і інші фактори, що підвищують тепловий стан двигуна, наприклад, збільшення кута випередження запалювання й ін. Методи усунення детонації 1. Підвищення антидетонаційної стійкості бензину шляхом: а) добавки в бензин високооктанового компонента, наприклад, бензолу; б) добавки в малих кількостях антидетонаторів, що знижують займистість палив - присадки ТЕС і ЦТМ. Присадка ТЕС - тетраетілсвинець Pb(C2H5)4, що у кількості 54% входить до складу етилової рідини, яка складається з ТЕС, виносія і фарби. Додавання ТЕС в автомобільні бензини різко підвищує їх октанове число. Тетраетілсвинець дуже отрутний. Крім того, фарба для бензину викликає злоякісні захворювання в людини. У Києві і Кримській зоні відпочинку бензини з антидетонаторами не застосовують. ЦТМ – циклопентадіенілтрикарбонілмарганець MnC5H5(CO)3. Токсичність ЦТМ у 300 разів менше ТЕС. Недоліком ЦТМ є те, що при роботі двигуна з цією присадкою нагар на свічі стає електропровідним, з'являються пропуски запалювання, і незгоріла суміш, що зібралася на вихлопі, вибухає. Передчасне запалення Джерелом передчасного запалення (калільного запалювання) можуть бути сильно нагріті гострі крайки клапанів, електроди свічі, а також тліючі частки нагару до моменту проскакування іскри між електродами свічі запалювання. Розвиток калільного запалювання відбувається і при запалюванні від іскри. Основна його відмінність у тім, що при калільному запалюванні має місце некероване запалення. Його ознаки: 1. Індикаторні діаграми в координатах p-V мають петлю. Петля на діаграмі з'являється при запаленні суміші розжареними поверхнями зі значним кутом випередження запалювання. 2. Глухі стукоти. На тлі загального шуму двигуна при його роботі на великих навантаженнях ці стукоти знайти практично неможливо. Калільне запалювання є найбільш небезпечним видом порушення згоряння. Протягом декількох хвилин після його появи звичайно прогорають поршні. Як правило, калільне запалювання виникає в одному з циліндрів. 3. Різко підвищується температура в циліндрі двигуна. Для усунення калільного запалювання гострі крайки клапанів притупляють, установлюють свічі з великим калільним числом. Наступне калільне запалення Джерелом наступного калільного запалення є розпечені (тліючі) частки нагару. При роботі двигуна на режимах малих навантажень у камері згоряння (в основному на днищі поршня) утворюється нагар. У випадку, коли двигун переходить на режим великих навантажень, цей нагар тріскається, відшаровується від поверхні і попадає в КЗ у виді розпечених часток розміром 0,3-0,5мм. Ці частки викликають запалення робочої суміші. При наступному калільному запаленні на індикаторній діаграмі з'являються гострі піки і різко зростають pz і dp/dj. Робота двигуна супроводжується характерним для цього виду порушення згоряння рокотом. Запалення від стиску при виключеному запалюванні Таке запалення спостерігається в двигунах з e > 9. При переході двигуна від режиму максимальної потужності до режиму холостого ходу після вимикання запалювання він продовжує працювати ще якийсь час. Це зв'язано з тим, що при холостому ході в нормально прогрітому двигуні робоча суміш запалюється від стиску. ТЕМА 6 ПРОЦЕСИ СУМІШОУТВОРЕННЯ В ДИЗЕЛЯХ. ЗАПАЛЕННЯ І ЗГОРЯННЯ ПАЛИВА
Утворення пальних сумішей Повнота і швидкість згоряння палива визначаються такими факторами, як однорідність суміші, швидкість, місце і час утворення суміші. Однорідною називають суміш, у якій біля кожної молекули палива розташована однакова кількість молекул кисню, азоту й інших компонентів. Суміш, яка складається з компонентів, що знаходяться в різних агрегатних станах, завжди неоднорідна, і її називають двухфазною чи гетерогенною. Змішування компонентів суміші відбувається в результаті молекулярної дифузії одного газу в іншій. У сучасних двигунах тривалість процесу сумішоутворення складає 0,0005—0,06 с. Інтенсифікація дифузійних процесів можлива підвищенням температури компонентів, збільшенням поверхонь змішання поділом потоків на окремі струмені, організацією турбулентної дифузії, що сприяє переходу з одного середовища в інше не тільки окремих молекул, але і визначених об'ємів компонентів. У газових двигунах здійснюють головним чином зовнішнє сумішоутворення за допомогою змішувачів, які установлюються у впускній системі. Для поліпшення змішування використовують завихрювання повітря в процесі наповнення циліндрів, багатодирчасті форсунки і впуск газу з надкритичними швидкостями. Проте при внутрішньому сумішоутворенні суміш менш однорідна, чим при зовнішньому. Утворення пальної суміші з повітря і легковипаровуючих рідких палив утрудняють різні агрегатні стани компонентів. Дифузійним процесам змішування повинен передувати випар палива. Це, поряд з великою масою молекул палива, сповільнює змішування в результаті молекулярної дифузії ще більшою мірою, ніж при змішуванні з повітрям газоподібних палив з високою теплотою згоряння. Прискорення випару палива досягають збільшенням поверхні випару в десятки і сотні разів розпилюванням палива, що випливає з розпилювачів карбюраторів, на окремі краплі розміром у 100 - 300 мкм. При випарі палива зменшується температура суміші; це знижує тиск насичених пар палива і, отже, кількість палива, що випарувалося, в одиниці об'єму суміші. Для підтримки швидкості випару суміш підігрівають так, щоб на шляху проходження суміші до циліндрів випаровувалося 60—80% палива. Інше паливо попадає в циліндри з потоком пароповітряної суміші у виді крапель і плівки. При цьому кількість палива, що попадає в окремі циліндри в рідкій фазі, різне. Рівномірність складу суміші по окремих циліндрах і однорідність її можна збільшити, забезпечуючи більш тонке розпилювання палива і більш інтенсивний прогрів двохфазної суміші у впускній системі двигуна. Однак зменшення розмірів крапель при карбюруванні і підігріві зменшують наповнення циліндрів. Тому карбюрування здійснюють при температурі 250-350К и невеликих швидкостях повітря в дифузорах карбюраторів (25 - 150 м/с). Поліпшення сумішоутворення можливо при використанні замість карбюрування вприскування палива насосами і форсунками у впускні патрубки (під тиском 0,25 - 0,5 МПа) чи безпосередньо в циліндри. Застосування вприскування поліпшує наповнення циліндрів, розпилювання і дозування палива по циліндрах, регулювання паливоподачі в залежності від умов роботи двигуна. Використання внутрішнього сумішоутворення дозволяє застосовувати підвищені ступені стиску, тому що усуненням підігріву у впускній трубі і більш пізнім вприскуванням палива можна уникнути зайвого нагрівання палива. Особливостями процесів сумішоутворення в двигунах із запаленням палива від теплоти стиснутого заряду є погана випаровуваність палива, їхній збіг, у значній частині, за часом із процесами згоряння, нерівномірність розподілу палива в об'ємі камери згоряння. Для прискорення випару дизельного палива необхідно забезпечити розпилювання і прогрівши крапель. Це в значній мірі визначає момент початку вприскування, його тривалість і тиск палива при упорскуванні. Кут випередження вприскування палива θ у сучасних двигунах складає 10 - 30° до ВМТ, а тривалість вприскування дози палива, що відповідає повній потужності, θ1=12 - 40° кута повороту колінчастого вала двигуна. Для забезпечення необхідної тонкості розпилювання доводиться застосовувати тиск вприскування не менш 7,5 МПа для розділених камер і 25 МПа для нерозділених камер на початку вприскування і, що доходить у процесі вприскування відповідно до 25 - 245 МПа. При плині палива по каналах распилюючих отворів і його відділенні від крайок цих отворів потік дістає збурювання, що викликають поперечні і подовжні коливання тиску в струмені, що деформують струмінь і в окремих випадках розривають її на частині. При влученні струменя в щільний повітряний заряд камери згоряння в результаті взаємодії сил поверхневого натягу й аеродинамічних сил, сил тиску струмінь починає руйнуватися на окремі об'єми різної величини і форми. Краплі продовжують зменшуватися в результаті випару і триваючого розпаду. У результаті монолітний спочатку струмінь, розпадаючись, утворить факел, що складається з окремих крапель, пар палива і газів, що заповнюють простір між краплями. Будова факела распиленого і випаруваного палива міняється безупинно під час вприскування. Концентрація палива в перетинах факела нерівномірна (по осі розташовується так називаний стрижень факела); у міру видалення від осі розмір крапель і їхня швидкість швидко зменшуються, а кількість крапель і пар зростає. З крапель навколо стрижня утвориться так називана оболонка факела. За першими краплями утвориться спутний потік газу і пар, температура в якому у результаті випару крапель знижується. В міру переміщення крапель їхня траєкторія відхиляється від осі, чому сприяють випадково спрямовані від осі факела результуючі аеродинамічних сил. У результаті перетин факела збільшується, що характеризується величиною тілесного кута факела φ. Паливо може запалитися вже під час розвитку факела; у результаті місцевого виділення теплоти можуть утворитися високотемпературні (заповнені продуктами згоряння) зони з тиском, що локально підвищується. Це приведе до руйнування і перебудови факела, прискоренню прогріву і випару крапель. Після відсічення подачі палива швидкість струменів і крапель швидко знижується, факел коротшає, його перетини зменшуються. Якість розпилювання палива характеризується двома параметрами: 1) тонкістю розпилювання; 2) однорідністю крапель (відхиленням їхніх діаметрів від середнього значення). Тонкість розпилювання визначається середнім діаметром крапель. Якість розпилювання палива залежить від тиску вприскування, геометричних розмірів соплових отворів форсунки, частоти обертання вала двигуна, властивостей палива, тиски і температури стиснутого повітря, типу камери згоряння.
|
||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 291; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.247.237 (0.013 с.) |