Характеристики автомобильных двигателей. Внешние и частичные скоростные характеристики карбюраторного и дизельного двигателей. Коэффициент запаса крутящего момента. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Характеристики автомобильных двигателей. Внешние и частичные скоростные характеристики карбюраторного и дизельного двигателей. Коэффициент запаса крутящего момента.



Для оценки мощностных и экономических показателей двигателя при его работе в различных условиях пользуются характеристиками двигателя.

Характеристикой двигателя называется зависимость основных показателей его работы (мощности, крутящего момента, расхода топлива) от одного из параметров режима работы (частоты вращения коленчатого вала, нагрузки и др.).

Основные характеристики автомобильных двигателей определяются ГОСТ 14846-81 «Двигатели автомобильные. Методы стендовых испытаний».

Скоростная характеристика двигателя представляет собой графическую зависимость основных эффективных показателей его работы Ре, Ме, GТ и ge от частоты вращения коленчатого вала при постоянном положении дроссельной заслонки (или рейки топливного насоса) и установившемся тепловом состоянии.

Скоростная характеристика, полученная при полной подаче топлива (полностью открытая дроссельная заслонка или соответствующее положение рейки топливного насоса дизеля) и углах опережения зажигания или начала впрыскивания топлива по техническим условиям на двигатель, называется внешней характеристикой двигателя.

Характеристики, соответствующие постоянным промежуточным положениям дроссельной заслонки или рейки топливного насоса, называются частичными скоростными характеристиками двигателя.

Внешние скоростные характеристики карбюраторного двигателя и дизеля приведены соответственно на Рис. 11.1.

Скоростную характеристику реального двигателя строят по результатам стендовых испытаний. Вал работающего двигателя нагружают с помощью тормоза, обеспечивая фиксирование частоты вращения от минимально устойчивой до максимально допустимой. При этом на каждой частоте замеряют тормозной момент МТ в Нм и часовой расход топлива в кг/ч. По результатам испытаний строят кривые зависимости эффективного крутящего момента (Ме = МТ) и часового расхода топлива GT от частоты вращения вала двигателя n. Для построения графиков эффективной мощности Pe и удельного расхода топлива ge используют формулы:

Pe = n Me / 9550, кВт;

ge = GT / Pe, кг/кВт ч

 

где n, мин-1; Me, Нм.

 

Рис.11.1

Характер кривой Me обусловлен изменением среднего эффективного давления pe. При полной подаче топлива наибольшее давление pe, а значит, и наибольшее значение Me получают при средних частотах вращения коленчатого вала. С понижением и повышением частоты величина pe уменьшается вследствие ухудшения газообмена, а также больших потерь: тепловых при низких частотах вращения и механических при высоких.

Характер кривой Pe скоростной характеристики обусловливается тем, что эффективная мощность прямо пропорциональна не только давлению pe, но и частоте вращения n. Мощность Pe возрастает до тех пор, пока увеличение частоты вращения компенсирует падение pe.

На скоростной характеристике различают следующие частоты вращения коленчатого вала:

nmin – минимальная частота вращения, при которой возможна устойчивая работа двигателя при полной подаче топлива;

nM – частота вращения, соответствующая максимальному крутящему моменту;

nP – частота вращения, соответствующая максимальной мощности двигателя;

nmax – максимально возможная частота вращения коленчатого вала, устанавливаемая ограничителем (карбюраторный двигатель) или регулятором частоты вращения (дизель).

На скоростной характеристике дизеля (см. Рис. 11.1) в интервале частот вращения nP – nmax показаны регуляторные ветви характеристики.

Приспособляемость двигателя к изменению нагрузки оценивается с помощью коэффициента приспособляемости:

k = Me max / MeP,

или коэффициента запаса крутящего момента:

μ = (Me max – MeP ) 100% / MeP

 

В карбюраторных двигателях k = 1,25...1,35, в дизелях – 1,05...1.2. Коэффициент приспособляемости характеризует способность двигателя преодолевать кратковременные перегрузки без переключения передач.

«Автомобильные двигатели»

Тепловой баланс двигателя.

Теплота, выделяемая при горении топлива, не может быть полностью трансформирована в полезную работу, так как даже в соответствии со вторым законом термодинамики часть ее неизбежно отдается холодному источнику. Расходование теплоты сгорания топлива, внесенного в двигатель за определенней период времени, на полезную работу и различные потери характеризуется тепловым балансом.

С помощью теплового баланса можно определить степень совершенства конструкции и регулировок двигателя и наметить пути улучшения экономичности его работы.

Уравнение теплового баланса:

 

Q = Qе + Qохл + QГ + Qнс + Qост,

 

где Q – теплота сгорания топлива, поступившего в двигатель;

Qе – теплота, эквивалентная эффективной работе двигателя;

Qохл теплота, переданная в охлаждающую среду через стенки цилиндра;

QГ теплота, уносимая с отработавшими газами;

Qнс потери теплоты вследствие неполноты сгорания топлива;

Qост остальные, не учтенные ранее тепловые потери.

 

В относительных величинах (%) уравнение теплового баланса можно записать в виде:

100% = qе + qохл + qГ + qнс + qост,

 

где qе = (Qе / Q) 100%, qохл = (Qохл / Q) 100% и т.д.

 

Теплоту сгорания Q (кДж/ч) определяют по часовому расходу топлива GТ (кг/ч) с учетом его низшей теплотворной способности Hu (кДж/кг):

Q = GТ Hu.

 

Количество теплоты Qе (кДж/ч), эквивалентное эффективной мощности двигателя Ne (кВт):

 

Qе = 3600 Ne.

 

Зная количество охладителя Gохл (кг/ч), проходящего через систему охлаждения в единицу времени, и температуры его на входе T1 и выходе из системы T2, можно определить Qохл (кДж/ч):

Qохл = Gохл сохл (T2 – T1 ),

 

где сохл теплоемкость охладителя, кДж/(кг К).

 

При известном количестве воздуха (горючей смеси) Gсм (кг/ч), поступающего в двигатель в единицу времени, его температуре Tсм (К) и температуре отработавших газов TГ (К) количество теплоты (кДж/ч), уносимой с этими газами, находят по формуле:

 

QГ = Gсм (c′′p TГ – cp Tсм),

 

где c′′p теплоемкость отработавших газов при постоянном давлении, кДж/(кг град);

cp теплоемкость горючей смеси при постоянном давлении, кДж/(кг град).

 

Потери теплоты вследствие химической неполноты сгорания топлива (кДж/ч) определяются только для карбюраторных двигателей при значении коэффициента избытка воздуха α < 1 по уравнению:

Qнс = 61500 GТ (1 – α).

 

Остальные теплопотери Qост = Q – (Qе + Qохл + QГ + Qнс ) включают потери теплоты на преодоление трения, потери излучением нагретых внешних поверхностей двигателя, потери на привод вспомогательных механизмов и др.

Слагаемые теплового баланса изменяются в зависимости от нагрузки, теплового состояния, скоростного режима работы двигателя и ряда других факторов.

При повышении степени сжатия увеличивается доля теплоты, преобразованной в полезную работу.

По мере уменьшения нагрузки двигателя при постоянном скоростном режиме доля теплоты, преобразуемой в полезную работу, уменьшается, а потери увеличиваются и составляют 100% при работе двигателя без нагрузки.

При работе двигателя с полной нагрузкой лучшее теплоиспользование имеет место на средних скоростных режимах, когда суммарные тепловые потери в охлаждающую среду, с отработавшими газами и механические потери минимальны (Рис. 14.1, а)).

Рис. 14.1

Изменение состава смеси существенно влияет на теплоиспользование в двигателе вследствие изменения теплоты сгорания и скорости сгорания смеси (Рис. 14.1, б)). Работа на обогащенных смесях характеризуется уменьшением эффективности использования теплоты из-за неполноты сгорания топлива, хотя тепловые потери в охлаждающую среду и с отработавшими газами при этом несколько снижаются. По мере обеднения смеси потери от неполноты сгорания уменьшаются, но возрастают потери в охлаждающую среду и с отработавшими газами.

В дизелях по сравнению с карбюраторными двигателями большие потери теплоты на преодоление механических сопротивлений вследствие больших сил давления газа и связанных с ними потерь на трение. Однако принципиально неустранимые потери теплоты в дизелях из-за более высокой степени сжатия меньше, чем в карбюраторных двигателях, поэтому эффективный КПД дизелей выше.

 

 

«Автомобильные двигатели»



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 1202; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.6.114 (0.02 с.)