Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Радиотехнические цепи и сигналы

Поиск

РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ

Лабораторные работы №№ 1, 3, 4, 6

 

 

Методическое пособие

по курсу «Радиотехнические цепи и сигналы»

для студентов, обучающихся по направлению «Радиотехника»

 

 

Под редакцией В.Г. Карташева

 

Москва Издательский дом МЭИ 2007

УДК

621.396

Р–154

 

Утверждено учебным управлением МЭИ

Подготовлено на кафедре основ радиотехники

Рецензент: канд. техн. наук, проф. А.К. Нарышкин

Р–154 Радиотехнические цепи и сигналы. Лабораторные работы №№ 1, 3, 4, 6: методическое пособие / Б.П. Поллак, Л.И. Пейч, В.Г. Карташев, С.В. Пучин; под ред. В.Г. Карташева. – М.: Издательский дом МЭИ, 2007. – 24 с.

Сборник содержит описания четырех лабораторных работ, посвященных изучению ос­новных понятий и методов спектрального анализа преобразования радиосигналов в линейных и нелинейных радиотехнических цепях. Изучаются спектры периодических сигналов (работа № 1), прохождение амплитудно-модулированных сигналов через резонансную цепь (работа № 3), нелинейное резонансное усиление сигналов (работа № 4), амплитудное детектирование сигналов диодным детектором (работа № 6).

Сборник предназначен для студентов радиотехнического факультета (всех специальностей).

Учебное издание

Поллак Борис Павлович

Пейч Лидия Ивановна

Карташев Владимир Герасимович

Пучин Сергей Владимирович

РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ

Лабораторные работы №№ 1, 3, 4, 6

Методическое пособие

по курсу «Радиотехнические цепи и сигналы»

для студентов, обучающихся по направлению «Радиотехника»

Редактор В.Г. Карташев

Редактор издательства Г.Ф. Раджабова

Темплан издания МЭИ 2006 (I), метод. Подписано в печать

Формат 60х84/16 Печать офсетная Физ. печ.л. 1,5

Изд. № 95 Тираж 250 экз. Заказ

ЗАО «Издательский дом МЭИ», 111250, Москва, Красноказарменная ул., д.14

Отпечатано в типографии

© Московский энергетический институт

(технический университет), 2007

ВВЕДЕНИЕ

Сборник содержит описания четырех лабораторных работ по курсу «Радиотехнические цепи и сигналы». Предлагаемые работы посвящены изучению ос­новных понятий и методов спектрального анализа преобразования радиосигналов в линейных и нелинейных радиотехнических цепях.

Лабораторные работы поставлены на базе всего предшествующего опыта преподавания теории радиотехнических цепей и сигналов, накопленного ка­федрой основ радиотехники. В частности, прототипами приведенных ра­бот послужили соответствующие работы из предыдущих аналогичных сборников (Баскаков С.И., Жуков В.П., Калинин В.А. Лабораторные работы по курсу РЦС: Линейные радиотехнические цепи – М.: Моск. энерг. ин-т, 1989; Журихин А.В. Лабораторные работы по курсам РЦС и ТОР: Нелинейные цепи и цепи с переменными параметрами – М.: Издательство МЭИ, 1993).

Особенность предлагаемого лабораторного практикума — все работы выполняются на одной и той же многофункциональной лабораторной установке для изучения радиотехнических цепей и сигналов. Она отличается от обычно используемых лабораторных установок анало­гичного назначения — в ней нет обычных генераторов и измерительных приборов, а их функции выполняет компьютерная генераторно-измери­тельная система.

Ниже приведены краткие описания установки и генераторно-изме­ри­тельной системы.

Многофункциональная лабораторная установка

для изучения радиотехнических цепей и сигналов

Лабораторная установка (рис.1) состоит из двух основных частей — лабора­торного стенда и персонального компьютера.

Изучаемая цепь собирается на лабораторном стенде из имеющегося в стенде и прилагаемого к нему набора схемотехнических элементов (рези­сторов, конденсаторов, индуктивных катушек и т.п.). В предлагаемых лабораторных работах используется универсальный лабо­раторный стенд «Сигнал-1». В нем имеется, в частности, универсальный транзисторный усилитель, используемый в работе № 4.

Входной сигнал формируется компьютерной гене­раторно-измеритель­ной системой. Он подается на цепь с генераторного выхода системы. Входной и выходной сигналы измеряются той же генераторно-измери­тельной системой. Измеряемый сигнал подается на измерительный вход системы.

Компьютерная генераторно-измерительная система представляет собой аппаратно-программную систему, специально разработанную для изучения радиотехнических цепей и сигналов. Аппаратная часть системы размещена частично в лабораторном стенде и частично — в компьютере.

 

 
 

Рис.1. Лабораторная установка

Рис.2. Панель для сборки цепи

Лабораторный стенд «Сигнал-1»

В большинстве лабораторных работ по курсу РЦС используются только генераторно-измерительная часть стенда и панель для сборки цепи (рис.2).

Панель для сборки цепи содержит достаточное количество гнезд, в которые вставляются сменные элементы собираемой схемы и соединительные проводники. Гнезда электрически соединены друг с другом и не соединены ни с какими другими элементами стенда.

Выходные гнезда генератора и входные гнезда измерителя расположены рядом с панелью для сборки цепи (слева и справа от нее).

В одной из лабораторных работ используется универсальный транзисторный усилитель, имеющийся в стенде. Схема усилителя представлена на верхней панели стенда.

Компьютерная генераторно-измерительная система

(краткое руководство для пользователя)

Компьютерная генераторно-измерительная система предназначена для изучения радиотехнических цепей и сигналов методами автоматизированного физического эксперимента и математического моделирования.

Форматирование графиков

Для управления графиками служит блок регуляторов (рис.3), расположенный под экраном справа.


Рис.3. Блок управления графиками

Регуляторы позволяют:

· выключатели автоформата (крайние слева) — включить или выключить непрерывное автоформатирование по каждой оси;

· кнопки «x» и «y» (если они «отжаты») — произвести одноразовое автоформатирование по соответствующей оси;

· «лупа» — изменить масштаб отображения. Из открывающегося меню можно выбрать варианты:

1) растянуть выделенный прямоугольник;

2) растянуть выделенный интервал горизонтальной оси;

3) растянуть выделенный интервал вертикальной оси;

4) вернуться к предыдущему масштабу;

5) растянуть изображение от указанной точки;

6) сжать изображение к указанной точке;

· «захват рукой» — передвигать графики по экрану;

· «+» — захватить курсор указателем мыши и переместить его.

Работа с курсорами

 
 

С помощью курсоров можно измерить характерные значения напряжения, времени, частоты и т.п. в любой точке экрана. Для работы с курсорами служат блоки управления (рис.4), располо­женные под экраном:

Рис.4. Блоки управления курсорами

· посередине — блок кнопок «ручного» управления. Этими кнопками можно перемещать «активные» (отмеченные «■») курсоры;

· слева — редактор курсоров. В каждой строке имеет 6 позиций (слева направо):

1 – номер курсора;

2 – абсцисса центра курсора;

3 – ордината центра курсора;

4 – кнопка активизации курсора («активный» отмечается «■»);

5 – редактор изображения курсора (при потере курсора — «Bring to Center»);

6 – переключатель «привязки» курсора к графикам.

Правила

выполнения лабораторных работ в лаборатории РЦС

Подготовка к лабораторному занятию заключается в изучении соответст­вующего раздела курса (по учебнику или конспекту лекций) и выполнении до­машнего задания.

Отчет по домашнему заданию представляется каждым студентом индивиду­ально. Если отчет не представлен или выполнен неудовлетворительно, то сту­дент к лабораторной работе не допускается.

В процессе выполнения лабораторного задания студенты, как правило, за­рисовывают (с экрана) различные графики. Графики можно зарисовывать «от руки», но с примерным соблюдением масштаба. На зарисованных графиках должны быть приведены шкалы значений измеряемых величин и указаны усло­вия эксперимента.

Выполнив лабораторное задание, предъявите результаты преподавателю. Без его разрешения установку не выключайте.

По окончании занятия (после приема результатов работы преподавателем) выключите установку, разберите схему, сдайте лаборанту набор проводов и комплектующих деталей, наведите порядок на рабочем месте.

Отчет по лабораторной работе представляется каждым студентом индивиду­ально. Он должен содержать:

1) материалы домашней подго­товки;

2) исправление выявленных в них ошибок;

3) оформленные результаты выполнения лабораторного задания — указан­ные в задании графики, таблицы и пр.;

4) анализ обнаруженных расхождений между вашими исходными теоретическими представлениями и экспериментальными фактами либо вывод об отсутствии таких расхождений.

Защита выполненной работы осуществляется каждым студентом индивиду­ально. При оценке работы студента учитываются:

1) уровень подготовки к лабораторному занятию;

2) качество выполнения лабораторного задания;

3) качество представленного отчета;

4) уровень усвоения основных вопросов, изучаемых в работе. Примерные контрольные вопросы приведены в описании каждой работы.

ЛАБОРАТОРНЫЕ РАБОТЫ

Ниже приведены описания четырех лабораторных работ по курсу «Радиотехнические цепи и сигналы». Работы посвящены изучению ос­новных понятий и методов спектрального анализа радиосигналов и их преобразования в линейных и нелинейных радиотехнических цепях.

Лабораторные занятия проводятся фронтальным методом. На выполне­ние каждой лабораторной работы отводятся 4 академических часа. До­машняя подготовка к каждой работе рассчитана также на 4 часа.

Лабораторная работа № 1

СПЕКТРЫ ПЕРИОДИЧЕСКИХ СИГНАЛОВ

Цель работы — освоить основные понятия спектрального анализа периодических сигналов.

Изучаются следующие основные вопросы:

1) понятие дискретного спектра; 2) методика теоретического анализа спектра периодического сигнала; 3) спектры типовых периодических сигналов; 4) влияние формы и параметров сигнала на его спектр; 5) понятие спектральной плотности сигнала.

Домашнее задание

Изучите вышеперечисленные основные вопросы. Рекомендуются учебник [1] (§§ 2.1÷2.2), учебные пособия [2÷4] и конспект лекций.

1. Выпишите формулы разложения произвольного периодического сигнала u (t) в ряд Фурье.

2. Выпишите формулы для комплексных амплитуд гармоник периодической последовательности прямоугольных импульсов (рис.5) и периодической последовательности треугольных импульсов (рис.6). При этом рассмотрите как общий случай (произвольное соотношение T и T и), так и частный случай (T =2 T и).

3. Для периодического сигнала типа «меандр» (рис.5, T =2 T и) и для соответствующей периодической последовательности треугольных импульсов (рис.6, T =2 T и), задавшись конкретным значением амплитуды импульсов (U и=1 В), рассчитайте и сведите в таблицу комплексные амплитуды гармоник U n. Постройте осциллограммы и спектрограммы этих сигналов. Рисунки расположите удобно для сравнения; на осях приведите шкалы напряжения и укажите характерные значения времени и частоты.

Образец таблицы

n                     Сигнал
Un, В                     «Меандр»
                    «Треуг.»

 

4. Изобразите осциллограммы и характер спектрограмм периодической последовательности прямоугольных импульсов (U и=1 В, Т и=500 мкс) (в пределах 0÷6 кГц) для трех значений периода (T =2 мс, 4 мс, 8 мс). Рисунки расположите удобно для сравнения; на осях укажите характерные числовые значения напряжения, времени и частоты (в кГц).

 
 

Рис.5. Периодическая последовательность прямоугольных импульсов

 
 

Рис.6. Периодическая последовательность треугольных импульсов

Лабораторное задание

Лабораторное исследование проводится в режиме математического моделирования: компьютер формирует заданный сигнал в виде числовой последовательности, а затем, обрабатывая эту последовательность с помощью алгоритма быстрого преобразования Фурье (БПФ), вычисляет спектральные составляющие сигнала.

Подготовка установки к работе

Включите генераторно-измеритель­ную систему (ее ярлык — на рабочем столе) и установите режим измерения осциллограмм сигналов.

Включите отображение расчетного входного сигнала (отображение других сигналов отключите). Сформируйте непрерывный сигнал, состоящий из постоянной составляющей и одной гармоники (параметры на ваш выбор), и убедитесь в правильном отображении его осциллограммы.

1. Изучение влияния параметров гармонического сигнала

На его спектр

Перейдите в режим измерения спектров сигналов и убедитесь в правильном отображении спектро­граммы сформированного сигнала.

Перейдите в режим одновременного измерения осциллограмм и спектров сигналов. Изменяя параметры сиг­нала (постоянную составляющую, амплитуду, частоту, началь­ную фазу), наблюдайте изменения ос­цил­лограммы и спектрограммы сигнала. Убедитесь, что осциллограммы и спектрограммы количественно соответствуют друг другу и задаваемым параметрам сигнала.

2. Синтез периодических сигналов из спектральных составляющих

2.1. Сформируйте непрерывный сигнал, состоящий из постоянной составляющей и пяти гармоник, параметры которых задайте согласно вашим расчетам (третья строка таблицы; n =0, 1, 3, 5, 7, 9). Установите пределы отображения по частоте с некоторым запасом (от 0 до 15-й гармоники).

Установленные шкалы в пп. 2÷3 не изменяйте.

Последовательно увеличивая число суммируемых гармоник, наблюдайте приближение формируемого сигнала к периодической последовательности треугольных импульсов. Зарисуйте осциллограммы и спектрограммы наиболее точного приближения.

2.2. Аналогично п.2.1 попытайтесь синтезировать периодический сигнал из других спектральных составляющих (приведенных во второй строке таблицы). Зарисуйте осциллограммы и спектрограммы наиболее точного приближения синтезируемого сигнала к «меандру» (расположите новые рисунки удобно для сравнения с п.2.1).

3. Изучение спектра периодического сигнала типа «меандр»

Сформируйте сигнал типа «меандр», т.е. периодическую последовательность прямоугольных импульсов с параметрами, соответствующими п.3 домашнего задания (U и=1 В, T 1= −250 мкс, T 2=250 мкс, T =1 мс), и, не меняя пределов отображения, зарисуйте осциллограмму и спектрограмму сигнала (расположите их удобно для сравнения с п.2.2).

4. Изучение влияния периода повторения импульсов на спектр

Их последовательности

Увеличивайте период (T =2; 4; 8 мс) и наблюдайте изменения спектра. Подберите пределы отображения, удобные для изучения влияния периода на спектр (при T =8 мс на осциллограмме — 2 импульса, на спектрограмме — 3 «лепестка»). Не изменяя пределов, зарисуйте осциллограммы и спектрограммы для указанных значений периода (расположите их удобно для сравнения между собой).

5. Изучение влияния параметров импульса на спектр

Подготовка установки к работе

Соберите простой параллельный колебательный контур из индуктивной катушки (L =2¸5 мГн) и конденсатора (С =2¸5 нФ). Входное напряжение подается на контур через резистор (R г=10¸20 кОм), выходное напряжение снимается с контура.

Включите генераторно-измеритель­ную систему (ее ярлык — на рабочем столе). Установите режим измерения амплитудно-частотных характеристик цепей. Задайте амплитуду входного сигнала Um =1 В.

1. Изучение амплитудно-частотной характеристики

и измерение параметров резонансной цепи

Включите отобра­жение измеряемой АЧХ и запустите автоматическое измерение АЧХ. Установите пределы измерений по частоте (выделите область резонанса) и подберите удобный шаг измерений. Зарисуйте измеренную АЧХ.

Включите отобра­жение расчетной АЧХ. Из набора математических моделей цепи выберите одноконтурную резонансную цепь. Методом подбора параметров модели, дающих хорошую аппроксимацию измеренной АЧХ, измерьте параметры собранной цепи (k р, f р, Q, П f = f р/ Q).

Зашунтируйте резистор R г другим резистором (R = R г/2÷ R г) и убедитесь в расширении полосы пропускания исследуемой резонансной цепи. Для нового варианта цепи повторите измерения АЧХ и параметров (новую АЧХ нанесите на тот же график).

После этого шунтирующий резистор временно отключите.

2. Изучение влияния взаимной расстройки сигнала и цепи

На передачу сигнала

Переключите генераторно-измерительную систему в режим измерения характеристик сигналов (осциллограмм и спектров) и включите отобра­жение генерируемого и измеряемого сигналов. Сформируйте АМ-сигнал с гармоническим законом модуляции:

u (t) = U нес (1 + M вх cos (Ω t +Φ)) cos (ω0 t0),

где U нес=1 В, М вх=1, Ff /2 (П f — полоса пропускания более узкополосной цепи, т.е. цепи без шунта; точность установки частоты 0,25 кГц), Φ=φ0=0, f 0= f р. Установите рекомендуемые пределы отображения по времени (примерно 2 периода модуляции) и по частоте (примерно f 0±4 F).

Изменяя несущую частоту (вблизи резонанса), обратите внимание на искажения сигнала при расстройке относительно резонансной частоты цепи (проверьте, что собрана более узкополосная цепь, т.е. шунтирующий резистор отключен). Зарисуйте осциллограммы и спектрограммы: а) входного сигнала; б) выходного сигнала при расстройке, соответствующей наиболее заметным искажениям (f 0» f рf /2 или f 0» f р−П f /2); в) выходного сигнала при настройке (f 0= f р) (настройку удобно проконтролировать по спектру измеряемого выходного сигнала).

3. Изучение влияния частоты модуляции на параметры

Выходного АМ-сигнала

В режиме настройки (f 0= f р) изменяйте частоту модуляции и обратите внимание на изменение коэффициента модуляции M вых и начальной фазы огибающей Ψ выходного АМ-сигнала.

Для трех значений частоты модуляции (Ff /4, Ff /2, Ff) с помощью курсоров измерьте V макс, V мин и t 0 (момент времени, когда V (t 0) = V макс), а по ним определите параметры выходного сигнала:

М вых = (V максV мин) / (V макс+ V мин); Ψ(°) = −360 Ft 0.

Измеренные таким способом значения М вых и Ψ внесите в таблицу и сравните с расчетными.

Подготовка установки к работе

Подключите к усилителю генераторно-измерительную систему: генера­торный выход системы — к входу усилителя (гнездо «U1»), измерительный вход системы — к выходу усилителя (гнездо «U2»). Включите лабораторный стенд и питание транзисторного усилителя (кнопка «Вкл» на стенде).

Включите генераторно-измеритель­ную систему (ее ярлык — на рабочем столе).

1. Измерение амплитудно-частотной характеристики

АМ-сигнала

Отклоняясь от установленного в п.5 «оптимального» режима (изменяя u 0 и U нес), наблюдайте возникающие при этом искажения передаваемого сигнала. Зарисуйте осциллограммы и спектрограммы искаженных выходных сигналов для трех наиболее характерных случаев (аналогично п.5 домашнего задания).

Контрольные вопросы

1. Что такое колебательная характеристика резонансного усилителя?

2. Как рассчитать колебательную характеристику резонансного усили­теля, если характеристика транзистора аппроксимирована кусочно-линей­ной функцией? Степенным полиномом?

3. Какой вид имеет семейство колебательных характеристик для различных напряжений смещения?

4. Что такое недонапряженный режим? Перенапряженный режим? Критический режим? Какой вид имеют осциллограммы коллекторного тока в недонапряженном и перенапряженном режимах?

5. Как изменится семейство колебательных характеристик резонансного усилителя, если изменить напряжение источника коллекторного питания? Резонансное сопротивление контура?

6. Как следует выбирать параметры контура и режим работы резонансного усилителя для обеспечения неискаженного усиления амплитудно-модулированных колебаний? Изобразите осциллограммы напряжения на базе, коллекторного тока и напряжения на контуре при работе в этом режиме.

7. Резонансный усилитель работает в режиме неискаженного усиления амплитудно-модулированных колебаний. Как изменится осциллограмма выходного напряжения, если изменить амплитуду несущей входного напряжения? Смещение? Напряжение источника коллекторного питания? Резонансное сопротивление контура?

__________

Лабораторная работа № 6

АМПЛИТУДНОЕ ДЕТЕКТИРОВАНИЕ СИГНАЛОВ

ДИОДНЫМ ДЕТЕКТОРОМ

Цель работы — на примере амплитудного детектирования освоить методику спектрального анализа прохождения радиосигналов через линейные и нелинейные цепи.

Изучаются следующие основные вопросы:

1) понятие амплитудного детектирования сигналов; 2) процесс амплитудного детектирования сигналов диодным детектором (качественное описание); 3) понятие детекторной характеристики; 4) вид детекторной характеристики диодного детектора при сильных и слабых сигналах; 5) нелинейные искажения при амплитудном детектировании; 6) искажения при амплитудном детектировании из-за неоптимальности линейного НЧ-фильтра.

Домашнее задание

Изучите вышеперечисленные основные вопросы. Рекомендуются учебник [1] (§ 11.5), учебные пособия [2÷4] и конспект лекций.

1. Изобразите схему последовательного диодного детектора (нагрузка включена последовательно с диодом). На схеме укажите стрелками входное и выходное напряжения.

2. Изобразите характер осциллограмм, поясняющих работу рассматриваемого детектора в режиме детектирования немодулированного сигнала. При этом для каждого из нижеуказанных случаев изобразите осциллограмму немодулированного входного напряжения u (t) и — на том же графике — ожидаемую осциллограмму выходного напряжения v (t).

Рассмотрите следующие случаи:

· емкость нагрузки С =0;

· емкость нагрузки недостаточна для нормальной фильтрации выходного напряжения;

· емкость нагрузки С ®¥ (на этом графике обозначьте характерные значения — амплитуду Um входного напряжения и постоянное выходное напряжение v 0).

3. Выпишите формулы для расчета детекторной характеристики v 0(Um) и коэффициента детектирования k д диодного детектора при сильных сигналах.

4. Изобразите характер:

· зависимости выходного напряжения v 0 от сопротивления нагрузки R;

· семейства детекторных характеристик при различных значениях сопротивле­ния нагрузки R.

5. Изобразите характер осциллограмм входного u (t) и выходного v (t) напряжений при подаче на вход детектора амплитудно-модулированного напряжения (с коэффициентом модуляции около 0,8) для трех случаев:

· емкость нагрузки недостаточна;

· емкость нагрузки выбрана правильно;

· емкость нагрузки чрезмерно велика.

Лабораторное задание

Подготовка установки к работе

Соберите последовательный диодный детектор (сопротивление нагрузки R ≈10 кОм, емкость нагрузки С ≈5 нФ). Подключите к детектору генераторно-измери­тельную систему: генераторный выход системы — к входу детектора, а измерительный вход системы — к выходу детектора.

Запустите генераторно-измеритель­ную систему (ее ярлык — на рабочем столе). Установите режим изу­чения характеристик сигналов (осциллограмм и спектров).

Включите отобра­жение расчетного входного сигнала и сформируйте гармонический сигнал:

u (t) = u 0 + Um cos (ω0 t),

где u 0=0, Um =5 В, f 0=10 кГц («точность» 0,5 кГц). Установите удобные пределы отображения (примерно ± 100 мкс по времени и 0÷10 кГц по частоте).

Включите отобра­жение реального генерируемого сигнала. Проверьте, что у генерируемого напряжения действительно u 0=0 и Um =5 В. Если это не так, то выполните сервисную программу «калибровка». После этого отобра­жение расчетного входного сигнала можно отключить.

Включите отобра­жение реального измеряемого сигнала. Убедитесь, что наблюдаемое семейство осциллограмм входного u (t)и выходного v (t)напряжений качественно соответствует ожидаемому.

1. Изучение влияния емкости нагрузки на процесс детектирования

Подключая параллельно резистору различные конденсаторы (в порядке увеличения емкости), наблюдайте влияние емкости нагрузки C на выходной сигнал. Зарисуйте осциллограммы и спектрограммы входного и выходного напряжений для трех характерных случаев:

· С = С п (паразитная емкость при отключенном конденсаторе);

· емкость нагрузки недостаточна для нормальной фильтрации выходного напряжения;

· С = С макс (конденсатор с максимальной емкостью).

Здесь и далее на зарисованных графиках должны быть приведены шкалы значений измеряемых величин и указаны условия эксперимента.

Оставив в схеме конденсатор с максимальной емкостью, увеличьте час­тоту гармонического сигнала до 200 кГц. Установите новые пределы ото­бражения: примерно ± 1 мс по времени (при этом осциллограмма вход­ного напряжения «сжимается» в сплошную полосу) и 0÷500 кГц по час­тоте. Отключив и снова подключив конденсатор нагрузки, обратите вни­мание, как теперь выглядят на осциллограмме неотфильтрованные ВЧ-со­ставляющие выходного напряжения.

Дальше работайте в новом режиме отображения.

2. Изучение влияния сопротивления нагрузки

СОДЕРЖАНИЕ

ВВЕДЕНИЕ.................... 3

Многофункциональная лабораторная установка для изучения

радиотехнических цепей и сигналов.......... 3

Лабораторный стенд «Сигнал-1»............ 4

Компьютерная генераторно-измерительная система..... 5

Правила выполнения лабораторных работ в лаборатории РЦС.. 6

ЛАБОРАТОРНЫЕ РАБОТЫ.............. 7

Лабораторная работа № 1.

Спектры периодических сигналов.......... 8

Лабораторная работа № 3.

Прохождение амплитудно-модулированных сигналов

через резонансную цепь.............. 11

Лабораторная работа № 4.

Нелинейное резонансное усиление сигналов....... 15

Лабораторная работа № 6.

Амплитудное детектирование сигналов диодным детектором. 19

БИБЛИОГРАФИЧЕСКИЙ СПИСОК........... 24

РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 597; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.166.45 (0.015 с.)