Зв’язок між пропускною спроможністю ЛЗ та її смугою пропущення 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Зв’язок між пропускною спроможністю ЛЗ та її смугою пропущення



Чим вище частота несучого періодичного сигналу, тим більше інформації в одиницю часу передається по ЛЗ і тим вища пропускна спроможність ЛЗ при фіксованому способі фізичного кодування. Однак, з іншого боку, зі збільшенням частоти періодичного несучого сигналу збільшується і ширина спектру цього сигналу, тобто різниця між максимальною і мінімальною частотами того набору синусоїд, що у сумі дадуть обрану для фізичного кодування послідовність сигналів. ЛЗ передає цей спектр синусоїд з тими спотвореннями, що визначаються її смугою пропущення. Чим більше невідповідність між смугою пропущення лінії і шириною спектра інформаційних сигналів, які передаються, тим більше сигнали спотворюються і тим ймовірніші помилки в розпізнаванні інформації приймаючою стороною, а значить, швидкість передачі інформації насправді виявляється меншою, ніж можна було припустити.

Зв’язок між смугою пропущення лінії і її максимально можливою пропускною спроможністю, не залежить від прийнятого способу фізичного кодування, встановив Клод Шеннон [1]:

С = F×log2(1+Рсш),

де С - максимальна пропускна спроможність здатність лінії у біт/с; F - ширина смуги пропущення лінії в герцах; Рс, Рш - потужності сигналу та шуму відповідно.

З цього співвідношення видно, що хоча теоретичної межі пропускної здатності лінії з фіксованою смугою пропущення не існує, на практиці така межа існує. Дійсно, підвищити пропускну спроможність ЛЗ можна за рахунок збільшення потужності передавача або зменшення потужності шуму (завад) на ЛЗ. Обидві ці складові піддаються зміні з важкими зусиллями.

Близьким по суті до формули Шеннона є співвідношення, отримане Найквистом, яке визначає максимально можливу пропускну здатність ЛЗ, але без врахування шуму на лінії [1]:

С = 2×F×log2М,

де М - кількість станів інформаційного параметра, які можна розрізнити.

Якщо сигнал має два стани, то пропускна спроможність дорівнює подвійному значенню ширини смуги пропущення ЛЗ. Якщо ж передавач використовує більш ніж два стійкі стани сигналу для кодування даних, то пропускна спроможність ЛЗ підвищується, оскільки за один такт роботи передавач передає декілька біт вихідних даних, наприклад два біти при наявності чотирьох станів сигналу, що можна відрізнити (рис. 1б).

Хоча формула Найквиста явно не враховує наявність шуму, побічно його вплив відбивається у виборі кількості станів інформаційного сигналу. Для підвищення пропускної здатності каналу слід було б збільшити цю кількість до значних величин, але практично це неможливо через шум на ЛЗ. Оскільки, якщо амплітуда шуму буде перевищувати різницю між сусідніми рівнями, то приймач не зможе стійко розпізнавати дані, що передаються.

Приведені співвідношення дають граничне значення пропускної здатності лінії, а ступінь наближення до цієї межі залежить від конкретних методів фізичного кодування.

Завадостійкість і вірогідність

Завадостійкість ЛЗвизначає її здатність зменшувати рівень завад, які створюються у зовнішньому середовищі та на внутрішніх провідниках. Завадостійкість залежить від типу фізичного середовища, яке використовується, а також від екрануючих і засобів самої лінії. Найменш завадостійкими є радіолінії, високою завадостійкістю - волоконно-оптичні кабелі - вони малочутливі до зовнішнього електромагнітного випромінювання. Зазвичай для зменшення перешкод, що з’являються через зовнішні електромагнітні поля, провідники екранують і скручують [1, 4].

Перехресні наведення на ближньому кінці (Near End Cross Talk, NEXT) визначають завадостійкість кабелю до внутрішніх джерел перешкод, коли електромагнітне поле сигналу, переданого виходом передавача по одній парі провідників, наводить на іншу пару провідників сигнал завади. Якщо до другої пари буде підключений приймач, то він може прийняти наведену внутрішню заваду за корисний сигнал. Показник NEXT, виражений у децибелах, дорівнює

10×log (Рвихнав),

де Рвих, Рнав - потужності вихідного та наведеного сигналу відповідно.

Чим менше значення NEXT, тим кращий кабель. Так, для скрученої пари п’ятої категорії показник NEXT повинен бути менше -27дБ на частоті 100Мгц.

Показник NEXT звичайно використовується до кабелю, що складається з кількох кручених пар, оскільки в цьому випадку взаємонаведення однієї пари на іншу можуть досягати значних величин. Для одинарного коаксіального кабелю цей показник не має сенсу, а для подвійного коаксіального кабелю він також не застосовується внаслідок високого ступеня захищеності кожної жили. Оптичні волокна також не створюють будь-яких помітних перешкод одне одному.

У зв'язку з тим, що в деяких нових технологіях використовується передача даних одночасно по декількох кручених парах, останнім часом став застосовуватися показник PovserSUM, що є модифікацією показника NEXT. Цей показник відбиває сумарну потужність перехресних наведень від усіх передавальних пар у кабелі.

Вірогідність передачі даних характеризує ймовірність спотворення для кожного переданого біта даних. Іноді цей же показник називають інтенсивністю бітових помилок (Bit Error Rate, BER). Величина BER для каналів зв'язку без додаткових засобів захисту від помилок (наприклад, для кодів що самокоректуються або протоколів з повторною передачею перекручених кадрів) складає, як правило, 10-10 -10-10, в оптоволоконних ЛЗ: 10-9. Значення вірогідності передачі даних, наприклад, у 104 говорить про те, що в середньому з 104 біт спотворюється значення одного біту. Спотворення біт відбуваються як за рахунок завад на ЛЗ, так і через спотворення форми сигналу обмеженою смугою пропущення лінії. Тому для підвищення вірогідності переданих даних потрібно підвищувати ступінь завадостійкості ЛЗ, знижувати рівень перехресних наведень у кабелі, а також використовувати більш широкополосні ЛЗ [1 - 4].

 

Стандарти кабелів

Кабель - це досить складний виріб, який складаються з провідників, шарів екрана й ізоляції. У деяких випадках до складу кабелю входять з’єднувачі, за допомогою яких кабелі приєднуються до обладнання. Крім цього, для забезпечення швидкої перекомутації кабелів та обладнання використовуються різні електромеханічні пристрої, які називаються кросовими секціями, кросовими коробками або шафами. В КМ застосовуються кабелі, що задовольняють визначеним стандартам і дозволяють будувати кабельну систему мережі з’єднуючи пристрої різних виробників. Сьогодні найбільш вживаними стандартами у світовій практиці є [1, 4, 17]:

- Американський стандарт EIA/TIA-568A, який був розроблений спільними зусиллями декількох організацій: ANSI, EIA/TIA і лабораторією Underwriters Labs (UL). Стандарт EIA/TIA-568 розроблений на основі попередньої версії стандарту EIA/TIA-568 і доповнень до цього стандарту TSB-36 і TSB-40A).

- Міжнародний стандарт ISO/IEC 11801.

- Європейський стандарт EN50173.

Ці стандарти близькі між собою і за багатьма позиціями, які пред'являються до кабелів. Однак є і розходження між цими стандартами, наприклад, у міжнародний стандарт 11801 і європейський EN50173 увійшли деякі типи кабелів, що відсутні в стандарті EIA/TAI-568A.

До появи стандарту EIA/TIA велику роль грав американський стандарт системи категорій кабелів Underwriters Labs, розроблений разом з компанією Anixter. Пізніше він увійшов до стандарту EIA/TIA-568 [1, 4].

Крім цих відкритих стандартів, багато компаній у свій час розробили свої фірмові стандарти, з яких і досі має практичне значення тільки один - стандарт компанії IBM.

При стандартизації кабелів прийнято протокольно-незалежний підхід. Це означає, що в стандарті оговорюються електричні, оптичні і механічні характеристики, яким повинен задовольняти той чи інший тип кабелю чи виробу для сполучення - роз’єм, кросова панель тощо. Однак для якого протоколу призначений даний кабель, стандарт не визначає. Тому не можна придбати кабель для протоколу Ethernet чи FDDI, потрібно просто знати, які типи стандартних кабелів підтримують протоколи Ethernet і FDDI.

В ранніх версіях стандартів визначались тільки характеристики кабелів, без з’єднувачів. В останніх версіях стандартів з’явились вимоги до елементів сполучення (документи TSB-36 і TSB-40A, що потім увійшли до стандарту 568А), а також до ліній (каналів), що представляють типову зборку елементів кабельної системи, яка складається зі шнура від робочої станції до розетки, самої розетки, основного кабелю, точки переходу (наприклад, ще однієї розетки або кросового з’єднання) і шнура до активного обладнання, наприклад концентратора або комутатора.

Ми зупинимось тільки на основних вимогах до самих кабелів, не розглядаючи характеристик елементів сполучення і зібраних ліній. У стандартах кабелів обговорюються досить багато характеристик, найважливіші з яких перераховані нижче (перші дві з них уже були досить детально розглянуті).

- Загасання (Attenuation) - вимірюється в децибелах на метр для визначеного частоти або діапазону частот сигналу.

- Перехресні наведення на ближньому кінці (Near End Cross Talk, NEXT) - вимірюються в децибелах для визначеної частоти сигналу.

- Імпеданс (хвильовий опір) - це повний (активний і реактивний) опір в електричному ланцюгу. Імпеданс вимірюється в Омах і є сталою величиною для кабельних систем (наприклад, для коаксіальних кабелів, які використовуються у стандартах Ethernet, імпеданс кабелю повинний складати 50 Ом). Для неекранованої скручений пари, яка найчастіше використовується значення імпедансу - 100 і 120 Ом. В області високих частот (100-200 МГц) імпеданс залежить від частоти.

- Активний опір - це опір постійному струму в електричному ланцюгу. На відміну від імпедансу активний опір не залежить від частоти і зростає зі збільшенням довжини кабелю.

- Ємність (іноді застосовують термін „паразитна ємність”)- це властивість металевих провідників накопичувати енергію. Два електричних провідники в кабелі, розділені діелектриком, є конденсатором, здатним накопичувати заряд. Ємність є небажаною величиною, тому вона повинна бути якнайменшою. Високе значення ємності в кабелі приводить до перекручування сигналу й обмежує смугу пропущення лінії.

- Рівень зовнішнього електромагнітного випромінювання або електричний шум. Електричний шум - це небажана змінна напруга у провіднику. Електричний шум буває двох типів: фоновий та імпульсний. Електричний шум можна також розділити на низько-, середньо- і високочастотний. Джерелами фонового електричного шуму в діапазоні до 150 кГц є лінії електропередачі, телефони і лампи денного світла; у діапазоні від 150 кГц до 20 МГц - комп'ютери, принтери, ксерокси; у діапазоні від 20МГц до 1ГГц - телевізійні та радіопередавачі, мікрохвильові печі. Основними джерелами імпульсного електричного шуму є мотори, перемикачі і зварювальні агрегати. Електричний шум виміряється в мілівольтах.

- Діаметр чи площа перетину провідника. Для мідних провідників досить вживаною є американська система AWG (American Wire Gauge), що вводить деякі умовні типи провідників (наприклад 22AWG, 24AWG, 26AWG). Чим більше номер типу провідника, тим менше його діаметр. У європейських і міжнародних стандартах діаметр провідника вказується в міліметрах.

Приведений перелік характеристик далеко не повний, в ньому представлені тільки електромагнітні характеристики і його потрібно доповнити механічними та конструктивними характеристиками, що визначають тип ізоляції, конструкцію з’єднання і т. д. Крім універсальних характеристик, таких, наприклад, як загасання, що застосовуються для всіх типів кабелів, є характеристики, що застосовуються тільки до визначеного типу кабелю. Наприклад, параметр крок скрутки проводів використовується тільки для характеристики скрученої пари, а параметр NEXT застосовується тільки до багатопарних кабелів на основі скрученої пари [1, 4].

Основна увага в сучасних стандартах приділяється кабелям на основі скрученої пари та волоконно-оптичним кабелям.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 320; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.238.142.134 (0.021 с.)