Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Классификация дефектов кристаллического строения. Точечные дефекты, зависимость их концентрации от температуры. Краевая и винтовая дислокацииСодержание книги
Поиск на нашем сайте
Монокристалл можно вырастить из жидкого расплава. Монокристалл представляет кусок металла из одного кристалла. Металлы и сплавы, которые получают при обычных условиях, состоят из большого количества кристаллов и имеют поликристаллическое строение. Эти кристаллы называют зернами, и они имеют неправильную форму. Каждое зерно имеет свою ориентировку кристаллической решетки, и она отличается от ориентировки соседних зерен. Внутреннее кристаллическое строение зерна не является правильным. В кристаллических решетках металлов имеются дефекты (несовершенства), которые нарушают связи между атомами и оказывают влияние на свойства металлов. Все дефекты решетки это нарушения укладки атомов в решетке. Поверхностные несовершенства – границы зерен металла. Различают следующие структурные несовершенства: дефект решетки, точечный, малый, линейный, плоский. Дефекты кристаллов значительно меняют физические, механические, химические, технологические свойства металлов. К точечным дефектам относятся вакансии (пустые узлы), чужеродные атомы внедрения. Чем выше температура, тем больше дефектов. Атомы примесей являются одним из самых распространенных несовершенств кристаллической структуры (вакансии, дислоцированные атомы). Вакансии – это пустой узел кристаллической решетки, который образуется из-за различных причин. Источники вакансий – границы зерен, в которых нарушено правильное расположение атомов. Число вакансий и их концентрация зависят от температуры в обработке. Число вакансий увеличивается с повышением температуры. Одиночные вакансии встречаются при перемещении по кристаллу и объединяются в пары, образуя дивакансии, при этом уменьшается их суммарная поверхность, устойчивость спаренной вакансии возрастает, возможно образование тривакансий и целых цепочек. Дислоцированные атомы – это атомы, вышедшие из узла кристаллической решетки и занявшие место в междоузлии. Относятся к точечным дефектам. Примесные атомы занимают в кристаллической решетке место основных атомов или внедряются внутрь ячейки (разновидность точечных дефектов). Если правильность кристаллического строения вокруг вакансий, дислоцированных атомов и атомов примесей нарушается, то нарушается и уравновешенность силовых полей атомов во всех направлениях. Все изменения составляют не больше нескольких атомных диаметров. Точечные дефекты взаимодействуют друг с другом. Имеет место взаимодействие точечных дефектов и с дефектами линейными – дислокациями. Линейные дефекты малы в двух измерениях, в третьем они большего размера, который может быть соизмерим с длиной кристалла. К линейным дефектам относятся цепочки вакансий, межузельных атомов и дислокации. Дислокации могут быть достаточно протяженными в одном направлении, и иметь небольшое протяжение в противоположном направлении. От наличия дислокаций напрямую зависят прочность и пластичность металлов. Линейные несовершенства – дислокации, они являются особым видом несовершенств в кристаллической решетке. Характеристикой дислокационной структуры является плотность дислокаций. В настоящее время известны различные механизмы образования дислокаций. Дислокации могут возникать при росте зерен, при образовании субзерен. Экспериментально установлено, что границы зерен и блоков имеют большую плотность дислокаций. При кристаллизации из расплава энергетически выгодно, когда зародыш растет с образованием винтовой дислокации на его поверхности. Способствуют образованию дислокаций и сегрегации примесей. В затвердевшем металле дислокации возникают в результате скопления вакансий. Область несовершенства кристалла вокруг края экстраплоскости называется краевой (линейной) дислокацией. Краевая дислокация представляет быстрозатухающее поле упругих напряжений в кристаллической решетке вокруг края экстраплоскости, которое вызвано тем, что выше этого края параметры решетки несколько сжаты, а ниже соответственно растянуты. В одном измерении протяженность дислокации имеет макроскопический характер (дислокация может обрываться только на границе кристалла – она является границей зоны сдвига). Движение краевой дислокации – консервативное. Если экстраплоскость находится в верхней части кристалла, то дислокацию называют положительной; если экстраплоскость находится в нижней части кристалла, то ее называют отрицательной. Винтовые дислокации образуются, если две части кристалла сдвинуты к плоскости скопления вакансий. Если винтовая дислокация образована вращением по часовой стрелке, то ее называют правой, если вращение против часовой стрелки – левой. Вакансия и межузельные атомы к винтовой дислокации не стекают. Также возможно образование частичных и смешанных дислокаций. Образование дислокаций повышает энергию кристалла. Дислокации способствуют увеличению внутреннего напряжения в металлах. Применение поляризованного света позволяет выявить поля напряжений, возникающие вокруг дислокаций. Диффузия в металлах Диффузия – это перенос вещества, обусловленный беспорядочным тепловым движением диффундирующих частиц. При диффузии газа его молекулы меняют направление движения при столкновении с другими молекулами Основными типами движения при диффузии в твердых телах являются случайные периодические скачки атомов из узла кристаллической решетки в соседний узел или вакансию. Развитие процесса диффузии приводит к образованию диффузионного слоя, под которым понимают слой материала детали у поверхности насыщения, отличающийся от исходного по химическому составу, структуре и свойствам. Диффузионное движение любого атома – это случайное блуждание из-за большой амплитуды колебаний, которое не зависит ни от движения других атомов, ни от предыдущего движения данного атома. Не зависящие от температуры колебания атомов вокруг положения равновесия обычно происходят с частотой ~1013 с–1 Вопрос определения механизма диффузии является весьма сложным. Большую роль в решении этой проблемы сыграли работы Я.И. Френкеля, в которых показано огромное влияние дефектов кристаллической решетки, в особенности вакансий, на процесс диффузионного перемещения атомов. Наиболее затруднительным является простой обменный механизм диффузии, а наиболее вероятным – вакансионный. Каждому механизму диффузии соответствует определенная энергия активации Q, т. е. величина энергетического барьера, который необходимо преодолеть атому при переходе из одного положения в другое. Перемещение при краудионном механизме диффузии подобно распространению волны: каждый атом смещается на малую величину, а возмущение распространяется быстро. Для диффузии большое значение имеют вакансии и их ассоциации (бивакансии, комплексы вакансия – атом примеси), а также дефекты, являющиеся их источниками (линейные и поверхностные). Основным механизмом самодиффузии и диффузии в твердых растворах замещения является вакансионный. В твердых растворах внедрения основным механизмом перемещения примесных атомов небольшого размера является межузельный. Если два хорошо соединенных между собой куска чистых металлов АиВ длительно отжигать, то будет наблюдаться взаимное проникновение металлов и смещение первоначальной границы раздела, отмеченной инертными метками (оксидными частицами или вольфрамовыми проволочками) на величину Δх, прямо пропорциональную квадратному корню из времени отжига. Если DА > DВ, то компонент А проникает в В с большей скоростью, чем В в А, вследствие этого часть В образца увеличивается в объеме. Диффузионная металлизация – процесс диффузионного насыщения поверхности изделий металлами или металлоидами. Диффузионное насыщение проводят в порошкообразной смеси, газовой среде или расплавленном металле (если металл имеет низкую температуру плавления). Борирование – диффузионное насыщение поверхности металлов и сплавов бором для повышения твердости, коррозионной стойкости, износостойкости проводят путем электролиза в расплавленной соли бора. Борирование обеспечивает особенно высокую твердость поверхности, сопротивление износу, повышает коррозионную стойкость и теплостойкость. Борированные стали обладают высокой коррозионной стойкостью в водных растворах соляной, серной и фосфорной кислот. Борирование применяют для чугунных и стальных деталей, работающих в условиях трения в агрессивной среде (в химическом машиностроении). Хромирование – диффузионное насыщение хромом проводят в порошкообразных смесях хрома или феррохрома с добавками хромистого аммония (1 %) и окиси алюминия (49 %) при температуре 1000…1050 °C с выдержкой 6…12 ч. Хромирование применяют для деталей, которые работают на износ в пароводяных и агрессивных средах (арматура, вентили). При хромировании изделий из малоуглеродистых сталей твердость повышается и приобретается хорошая коррозионная стойкость. Алитирование – это процесс диффузионного насыщения поверхностного слоя алюминием, проводят в порошкообразных смесях алюминия или в расплавленном алюминии. Цель – получение высокой жаростойкости поверхности стальных деталей. Алитирование проводят в твердых и жидких средах. Силицирование – диффузионное насыщение кремнием проводят в газовой атмосфере. Насыщенный кремнием слой стальной детали имеет не очень высокую твердость, но высокую коррозионную стойкость и повышенную износостойкость в морской воде, азотной, соляной в серной кислотах. Силицированные детали применяют в химической, целлюлозно-бумажной и нефтяной промышленности. Для повышения жаростойкости силицирование применяют для изделий из сплавов на основе молибдена и вольфрама, обладающих высокой жаропрочностью. В материаловедении разрабатываются макро– и микроскопические теории диффузии. В макроскопической теории делается акцент на формализме, т. е. на термодинамических силах и параметрах. В микроскопической теории используют механизмы, основанные на теории об атомных скачках.
|
||||
Последнее изменение этой страницы: 2016-04-25; просмотров: 617; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.244.240 (0.007 с.) |