Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Конвергенция сетей связи на базе технологии IMSСодержание книги
Поиск на нашем сайте
q Концепция (архитектура) IMS является развитием т.н. архитектуры сети последующих поколений (NGN), обеспечивающим расширение возможностей сети связи в реализации разнообразных сервисов на базе отделения уровня инфраструктуры от уровня сервиса. q В силу направленности на мультимедийный сервис концепция IMS не рассматривает телефонию как основой вид услуг. Фактически, телефония в архитектуре IMS эмулируется, а голосовые соединения обеспечиваются технологическим способом, принципиально отличным от «классической» телефонии Архитектура сети IMS – это территориально распределенное «облако», использующее «плоскую» (неиерархическую) сеть передачи данных для соединения между собой основных функциональных элементов IMS инфраструктуры Для IMS разработана многоуровневая архитектура с разделением транспорта переноса трафика и сигнальной сети IMS для управления сеансами (рис. 1). Таким образом, при разработке IMS на мобильные сети фактически перенесена основная идеология Softswitch. В IMS выделяются 1) пользовательский уровень или уровень передачи данных (User Plane), 2) уровень управления (Control Plane) и 3) уровень приложений (Application Plane). В этих плоскостях 3GPP специфицирует не узлы сети, а функции. Это означает, что IMS-архитектура, как и архитектура Softswitch, также представляет собой набор функций, соединенных стандартными интерфейсами. При этом в случае IMS функции тоже оказываются описанными в стандартах. Разработчики вправе скомбинировать несколько функций в одном физическом объекте или, наоборот, реализовать одну функцию распределенным образом.
Ò Уровень серверов приложений Ð AS – Сервера приложений Ð TAS – Сервер телефонных приложений Ð IM-SSF – Функция коммутации услуг Ð OSA-GW – Шлюз к Parlay API Ò Уровень управления сеансом Ð CSCF – Функция управления сессиями и вызовами Ð HSS – Сервер абонентских данных Ð MRFC – Функция управления медиа-сервером Ð MGFC – Функция управления шлюзами Ò Уровень транспорта и абонентских устройств Ð MRFP - Медиа-сервер Ð MGFP - Медиа-шлюз Ð Абонентский доступ
Упрощённая архитектура IMS
Пользовательские базы HSS и SLF Каждая IMS-сеть содержит один или более серверов пользовательских баз данных HSS. Сервер HSS представляет собой централизованное хранилище информации об абонентах и услугах и является эволюционным развитием HLR (Home Location Register) из архитектуры сетей GSM. Сеть может содержать более одного HSS в том случае, если количество абонентов слишком велико, чтобы поддерживаться одним HSS. Такая сеть, наряду с несколькими HSS, должна будет иметь в своем составе функцию SLF (Subscriber Location Function), представляющую собой простую базу данных, которая хранит соответствие информации HSS адресам пользователей. Узел, передавший к SLF запрос с адресом пользователя, получает от нее сведения о том HSS, который содержит информацию об этом пользователе. Функция SIP-сервера Функция управления сеансами CSCF (Call Session Control Function) является центральной частью системы IMS, представляет собой, по сути, SIP-сервер и обрабатывает SIP-сигнализацию в IMS. Существуют функции CSCF трех типов: Proxy-CSCF (P-CSCF), Interrogating-CSCF (I-CSCF) и Serving-CSCF (S-CSCF). Первая из перечисленных, функция P-CSCF – это первая точка взаимодействия (на сигнальном уровне) пользовательского IMS-терминала и IMS-сети. С точки зрения SIP, она является входящим/исходящим прокси- сервером, через который проходят все запросы, исходящие от IMS- терминала или направляемые к нему. Однако функция P-CSCF может вести себя и как агент пользователя UA, что необходимо для прерывания сеансов в нестандартных ситуациях и для создания независимых SIP-транзакций, связанных с процессом регистрации. I-CSCF – еще один SIP-прокси, расположенный на границе административного домена Оператора. Когда SIP-сервер определяет следующую пересылку для некоторого SIP-сообщения, он получает от службы DNS адрес I-CSCF соответствующего домена. Кроме исполнения функций SIP-прокси I-CSCF взаимодействует по протоколу Diameter с HSS и SLF, получает от них информацию о местонахождении пользователя и об обслуживающей его S-CSCF. Если никакая функция S-CSCF еще не назначена, функция I-CSCF производит ее назначение. S-CSCF – центральная интеллектуальная функция на сигнальном уровне, т.е. функция SIP-сервера, который управляет сеансом. Помимо этого, S-CSCF выполняет функцию регистрирующего сервера сети SIP (SIP-registrar), то есть поддерживает привязку местоположения пользователя (например, IP-адресом терминала, с которого пользователь получил доступ в сеть) к его SIP-адресу (PUI-Public User Identity). Функция S-CSCF взаимодействует по протоколу Diameter с HSS, получает от последнего данные аутентификации пользователя, пытающегося получить доступ к сети, и данные о профиле пользователя, т. е. перечень доступных ему услуг – набор триггерных точек для маршрутизации сообщения SIP к серверам приложений. В свою очередь, функция S-CSCF информирует HSS о том, что этот пользователь прикреплен к нему на срок своей регистрации, и о срабатывании таймера регистрации. Функция PDF Функция Policy Decision Function (PDF) иногда интегрируется с функцией P-CSCF, но может быть реализована отдельно. Эта функция отвечает за выработку политики на основании информации о характере сеанса и о передаваемом трафике (транспортные адреса, ширина полосы и т.д.), полученной от P-CSCF. На базе этой информации PDF принимает решение об авторизации запросов от GGSN и производит повторную авторизацию при изменении параметров сеанса, а также может запретить передачу определенного трафика или организацию сеансов некоторых типов. Серверы приложений Серверы приложений (Application Servers), по существу, не являются элементами IMS, а работают, условно говоря, поверх нее, предоставляя услуги в сетях, построенных согласно IMS-архитектуре. Серверы приложений взаимодействуют с функцией S-CSCF по протоколу SIP. Основными функциями серверов приложений являются обслуживание и модификация SIP-сеанса, создание SIP-запросов, передача данных тарификации в центры начисления платы за услуги связи. Функция MRF Теперь рассмотрим MRF (Media Resource Function), являющуюся источником медиаинформации в домашней сети и позволяющую воспроизводить разные объявления, смешивать медиапотоки, транскодировать битовые потоки кодеков, получать статистические данные и анализировать медиаинформацию. Функция MRF делится на две части: MRFC – Media Resource Function Controller и MRFP – Media Resource Function Processor. MRFC находится на сигнальном уровне и взаимодействует с S-CSCF по протоколу SIP. Используя полученные инструкции, MRFC управляет по протоколу Megaco/H.248 процессором MRFP, находящимся на уровне передачи данных, а тот выполняет все манипуляции с медиаинформацией. Функция BGCF Breakout Gateway Control Function – это SIP-сервер, способный выполнять маршрутизацию вызовов на основе телефонных номеров. BGCF используется только в тех случаях, когда сеанс инициируется IMS- терминалом, а адресатом является абонент сети с коммутацией каналов (например, ТфОП или мобильной сети 2G). Основными задачами BGCF является выбор той IMS-сети, в которой должно происходить взаимодействие с сетью коммутации каналов, или выбор подходящего ТфОП/CS шлюза, если это взаимодействие должно происходить в сети, где находится сам сервер BGCF. В первом случае BGCF переводит сеанс к BGCF выбранной сети, а во втором – к выбранному ТфОП/CS шлюзу. Шлюз ТфОП/CS Шлюз ТфОП/CS поддерживает взаимодействие IMS-сети с ТфОП и позволяет устанавливать соединения между пользователями этих сетей. Он имеет распределенную структуру, характерную для архитектуры Softswitch: SGW – Signaling Gateway, MGCF – Media Gateway Control Function и MGW – Media Gateway. Шлюз безопасности SEG Для того чтобы защитить уровень управления в домене безопасности (security domain), представляющем собой такую область сети, которая принадлежит одному провайдеру услуг, в которой действуют единые административные правила и сетевая политика, трафик на входе в этот домен и на выходе из него будет проходить через шлюз безопасности SEG (Security Gateway). Как правило, границы домена безопасности совпадают с границами сети провайдера, а шлюзов SEG в сети провайдера обычно присутствует несколько. В качестве SEG часто выступают пограничные контроллеры SBC.
|
||
|
Последнее изменение этой страницы: 2016-04-23; просмотров: 2192; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.170 (0.007 с.) |