Биологическая мембрана: понятие, химический состав, свойства, распространенность, значение.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Биологическая мембрана: понятие, химический состав, свойства, распространенность, значение.



 

Биологические мембраны – сложные надмолекулярные структуры, окружающие все живые клетки и образующие в них замкнутые, специализированные компартменты – органеллы. Мембрану, ограничивающую цитоплазму клетки снаружи, называют цитоплазматической или плазматической мембраной (1). Название внутриклеточных мембран обычно происходит от названия ограничиваемых или образуемых ими субклеточных структур. Различают ядерную (2), митохондриальную (3), лизосомальную (4) мембраны, мембраны комплекса Гольджи (5), эндоплазматический ретикулум (6) и другие.   Плазматическая мембрана – ограничивает содержимое клетки от внешней среды; осуществляет контакт с другими клетками, получение, обработку и передачу информации внутрь клетки, поддержание постоянства внутренней среды. Ядерные мембраны (внешняя и внутренняя) – образуют ядерную оболочку, которая отделяет хромосомный материал от цитоплазматических органелл; через поры ядерной оболочки происходит транспорт белков и нуклеиновых кислот в ядро и из ядра. Митохондриальные мембраны – осуществляют преобразование энергии в ходе окислительного фосфорилирования, синтез АТФ. Лизосомальные мембраны – ограничивают гидролитические ферменты от цитоплазмы клетки, препятствуют самоперевариванию (аутолизу) клеток, способствуют поддержанию постоянства рН среды в лизосомах. Мембраны эндоплазматического ретикулума – принимают участие в образовании новых мембран, осуществляют синтез белков, липидов, полисахаридов, окисление гидрофобных метаболитов и ксенобиотиков.

 

Все мембраны по своей организации и составу обнаруживают ряд общих свойств. Они: · ‘состоят из липидов, белков и углеводов; · ‘являются плоскими замкнутыми структурами; ‘имеют внутреннюю и внешнюю поверхности (асимметричны); · ‘избирательно проницаемы. Биологические мембраны построены из липидов и белков, связанных друг с другом с помощью нековалентныхвзаимодействий. Основу мембраны составляет двойной липидный слой,в состав которого включены белковые молекулы .Липидный бислой образован двумя рядами амфифильныхмолекул, гидрофобные «хвосты» которых спрятаны внутрь, а гидрофильные группы - полярные «головки» обращены наружу и контактируют с водной средой. 1. Липиды мембран.В состав липидов мембран входят как насыщенные, так и ненасыщенные жирные кислоты. Ненасыщенные жирные кислоты встречаются в два раза чаще чем насыщенные, что определяет текучестьмембран и конформационную лабильность мембранных белков. В мембранах присутствуют липиды трех главных типов - фосфолипиды, гликолипиды и холестерол (рис. 4.2 - 4.4). Чаще всего встречаются глицерофосфолипиды - производные фосфатидной кислоты. ü главные функции липидов мембран состоят в том, что они: • формируют липидный бислой - структурную основу мембран;
 

• обеспечивают необходимую для функционирования мембранных белков среду;

• участвуют в регуляции активности ферментов;

• служат «якорем» для поверхностных белков;

• участвуют в передаче гормональных сигналов.

ü Изменение структуры липидного бислоя может привести к нарушению функций мембран.

По степени влияния на структуру бислоя и по силе взаимодействия с ним мембранные белки делят на интегральные и периферические. Важнейшие особенности интегральных и периферических белков представлены в

Характеристика мембранных белков

Интегральные белки Периферические белки
Глубоко внедрены в мембранную структуру и не могут быть удалены из мембраны без её разрушения. Локализованы на поверхности бислоя и экстрагируются растворами солей или просто водой.
Амфифильные глобулярные структуры, центральная погружённая часть – гидрофобна, концевые участки – гидрофильны. Глобулярные гидрофильные структуры.
Удерживаются в липидном бислое за счёт гидрофобных взаимодействий с углеводородными цепочками жирных кислот. Удерживаются на поверхности бислоя за счёт ионных взаимодействий с полярными участками фосфолипидов иинтегральных белков.

 

 

 

Углеводы в составе мембран не представлены самостоятельными соединениями, а обнаруживаются только в соединении с белками (гликопротеины) или липидами (гликолипиды).

 

Клеточная поверхность

Клеточная стенка — жёсткая оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции.

Строение оболочки клеток.

Клеточная оболочка располагается снаружи клетки, отграничивая последнюю от внешней или внутренней среды организма. Ее основу составляет плазмалемма (клеточная мембрана) и углеводно–белковая составляющая, имеющая различную толщину, в зависимости от царства организма (животная или растительная клетка) и от местонахождения клетки в многоклеточном организме. [2]

Функция клеточной стенки:

· Представляет собой внешний каркас – защитную оболочку.

· Обеспечивает транспорт веществ (через клеточную стенку проходит вода, соли, молекулы многих органических веществ).

 

9. Транспорт веществ через клеточную оболочку: понятие, разновидности, примеры. Экзоцитоз и эндоцитоз: понятие, механизм, значение.

 

Мембранный транспорттранспорт веществ сквозь клеточную мембрану в клетку или из клетки, осуществляемый с помощью различных механизмов — простой диффузии, облегченной диффузии и активного транспорта. Важнейшее свойство биологической мембраны состоит в ее способности пропускать в клетку и из нее различные вещества.

Пассивный транспорт.

Если вещество движется через мембрану из области с высокой концентрацией в сторону низкой концентрации (т. е. по градиенту концентрации этого вещества) без затраты клеткой энергии, то такой транспорт называется пассивным, или диффузией. Различают два типа диффузии: простую и облегченную.

Простая диффузия.

Характерна для небольших нейтральных молекул (H2O, CO2, O2), а также гидрофобных низкомолекулярных органических веществ. Эти молекулы могут проходить без какого-либо взаимодействия с мембранными белками через поры или каналы мембраны до тех пор, пока будет сохраняться градиент концентрации.

Облегченная диффузия.

Характерна для гидрофильных молекул, которые переносятся через мембрану также по градиенту концентрации, но с помощью специальных мембранных белков - переносчиков. Для облегченной диффузии, в отличие от простой, характерна высокая избирательность, так как белок переносчик имеет центр связывания комплементарный транспортируемому веществу, и перенос сопровождается конформационными изменениями белка. Один из возможных механизмов облегченной диффузии может быть следующим: транспортный белок (транслоказа) связывает вещество, затем сближается с противоположной стороной мембраны, освобождает это вещество, принимает исходную конформацию и вновь готов выполнять транспортную функцию. Мало известно о том, как осуществляется передвижение самого белка. Другой возможный механизм переноса предполагает участие нескольких белков-переносчиков. В этом случае первоначально связанное соединение само переходит от одного белка к другому, последовательно связываясь то с одним, то с другим белком, пока не окажется на противоположной стороне мембраны.

Активный транспорт.

Имеет место в том случае, когда перенос осуществляется против градиента концентрации. Такой перенос требует затраты энергии клеткой. Активный транспорт служит для накопления веществ внутри клетки. Источником энергии часто является АТФ. Для активного транспорта кроме источника энергии необходимо участие мембранных белков. Одна из активных транспортных систем в клетке животных отвечает за перенос ионов Na+ и K+ через клеточную мембрану. Эта система называется Na+ - K+ - насос. Она отвечает за поддержание состава внутриклеточной среды, в которой концентрация К+ выше, чем Na+.

Эндоцитоз и экзоцитоз (микровезикулярный транспорт).

Это еще два первичных (первично активных), близких по меха­низму транспорта, посредством которых различные материалы переносятся через мембрану либо в клетку (эндоцитоз), либо из клетки (экзоцитоз). С их помощью транспортируются крупно­молекулярные вещества (белки, полисахариды, нуклеиновые кис­лоты), которые не могут транспортироваться по каналам или с помощью насосов.

1. При эндоцитозе клеточная мембрана образует впячивания, или выросты, внутрь клетки, которые, отшнуровываясь, превра­щаются в пузырьки. Последние затем обычно сливаются с пер­вичными лизосомами, образуя вторичные лизосомы, в которых содержимое подвергается гидролизу - внутриклеточному перева­риванию. Продукты гидролиза используются клеткой. Например, выделившийся медиатор нервным окончанием захватывается сно­ва посредством эндоцитоза.

2. Экзоцитоз - процесс, обратный эндоцитозу, это механизм сек­реции нейрогормонов и нейромедиаторов. Экзоцитозные пузырьки образуются в аппарате Гольджи. В пузырьки упаковываются белки, образовавшиеся в рибосомах эндоплазматического ретикулума. Пузырьки транспортируются посредством сократительного аппарата клетки к клеточной мембране, сливаются с ней, а содер­жимое клетки выделяется во внеклеточную среду. Энергия АТФ расходуется на деятельность сократительного аппарата клетки. В процессе взаимодействия эндо- и экзоцитоза происходит самообновление клеточной мембраны (кругооборот, рециркуляция): в течение каждого часа в процессе эндоцитоза в разных клетках используется от 3 до 100% клеточной оболочки, но с такой же скоростью происходит ее возобновление в результате экзоцитоза.



Читайте также:





Последнее изменение этой страницы: 2016-04-23; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.237.2.4 (0.015 с.)