Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Прямая и косвенная адресацииСодержание книги
Поиск на нашем сайте
Когда производится прямая 9-битная адресация, младшие 7 бит берутся как прямой адрес из кода операции, а два бита указателя страниц (RP1, RP0) из регистра статуса, как показано на рис. 5.7. Признаком косвенной адресации является обращение к регистру INDF. Любая команда, которая использует INDF (адрес 00h) в качестве регистра фактически обращается к указателю, который хранится в FSR (адрес 04h). Чтение косвенным образом самого регистра INDF даст результат 00h. Запись в регистр INDF косвенным образом будет выглядеть как NOP, но биты статуса могут быть изменены. Необходимый 9-битный адрес формируется объединением содержимого 8-битного FSR регистра и бита IRP из регистра статуса (см. рис. 5.7). Обратите внимание, что некоторые регистры специальных функций располагаются в банке 1. Чтобы адресоваться к ним, нужно дополнительно установить в единицу бит RP0 в регистре статуса. Порты ввода/вывода Контроллеры подгруппы PIC16F8X имеют два порта: PORTA (5 бит) и PORTB (8 бит) с побитовой индивидуальной настройкой на ввод или на вывод. Порт A (PORTA) представляет собой 5-битовый фиксатор, соответствующий выводам контроллера RA<4:0>. Линия RA4 имеет вход триггера Шмитта и выход с открытым стоком. Все остальные линии порта имеют ТТЛ входные уровни и КМОП выходные буферы. Адрес регистра порта А – 05h. Каждой линии порта поставлен в соответствие бит направления передачи данных, который хранится в управляющем регистре TRISA, расположенном по адресу 85h. Если бит управляющего TRISA регистра имеет значение 1, то соответствующая линия будет устанавливаться на ввод. Ноль переключает линию на вывод и одновременно выводит на нее содержимое соответствующего регистра-фиксатора порта. При включении питания все линии порта по умолчанию настроены на ввод. На рис. 5.8 дана схема линий RA<3:0> порта A. Операция чтения порта А считывает состояние выводов порта, в то время как запись в него изменяет состояние триггеров порта. Все операции с портом являются операциями типа «чтение-модификация-запись». Поэтому запись в порт предполагает, что состояние выводов порта вначале считывается, затем модифицируется и записывается в триггер-фиксатор. Вывод RA4 мультиплексирован с тактовым входом таймера TMR0. Схема линии RA4 порта А приведена на рис. 5.9.
Порт В (PORTB) – это двунаправленный 8-битовый порт, соответствующий выводам RB<7:0> контроллера и расположенный по адресу 06h. Относящийся к порту В управляющий регистр TRISB расположен на первой странице регистров по адресу 86h. Если бит управляющего TRISB регистра имеет значение 1, то соответствующая линия будет устанавливаться на ввод. Ноль переключает линию на вывод и одновременно выводит на нее содержимое соответствующего регистра защелки. При включении питания все линии порта по умолчанию настроены на ввод. У каждой ножки порта В имеется небольшая активная нагрузка (около 100мкА) на линию питания (pull-up). Она автоматически отключается, если эта ножка запрограммирована как вывод. Более того, управляющий бит /RBPU регистра OPTION<7> может отключить (при RBPU=1) все нагрузки. Сброс при включении питания также отключает все нагрузки. Четыре линии порта В (RB<7:4>) могут вызвать прерывание при изменении значения сигнала на любой из них. Если эти линии настроены на ввод, то они опрашиваются и защелкиваются в цикле чтения Q1. Новая величина входного сигнала сравнивается со старой в каждом командном цикле. При несовпадении значения сигнала на ножке и в фиксаторе генерируется высокий уровень. Выходы детекторов «несовпадений» RB4, RB5, RB6, RB7 объединяются по ИЛИ и генерируют прерывание RBIF (запоминаемое в регистре INTCON<0>). Любая линия, настроенная как вывод, в этом сравнении не участвует. Прерывание может вывести кристалл из режима SLEEP. В подпрограмме обработки прерывания следует сбросить запрос прерывания одним из следующих способов:
При этом необходимо иметь в виду, что условие «несовпадения» будет продолжать устанавливать признак RBIF. Только чтение порта В может устранить «несовпадение» и позволит обнулить бит RBIF. Прерывание по несовпадению и программно устанавливаемые внутренние активные нагрузки на этих четырех линиях могут обеспечить простой интерфейс, например, с клавиатурой, с выходом из режима SLEEP по нажатию клавиш.
Схемы линий порта B приведены на рис. 5.10 и 5.11. При организации двунаправленных портов необходимо учитывать особенности организации ввода/вывода данных МК. Любая команда, которая осуществляет запись, выполняет ее внутри как «чтение-модификация-запись». Например, команды BCF и BSF считывают порт целиком, модифицируют один бит и выводят результат обратно. Здесь необходима осторожность. В частности, команда BSF PORTB, 5 (установить в единицу бит 5 порта B) сначала считывает все реальные значения сигналов, присутствующие в данный момент на выводах порта. Затем выполняются действия над битом 5, и новое значение байта целиком записывается в выходные фиксаторы. Если другой бит регистра PORTB используется в качестве двунаправленного ввода/вывода (скажем, бит 0), и в данный момент он определен как входной, то входной сигнал на этом выводе будет считан и записан обратно в выходной триггер-фиксатор этого же вывода, стирая предыдущее состояние. До тех пор, пока эта ножка остается в режиме ввода, никаких проблем не возникает. Однако если позднее линия 0 переключи тся в режим вывода, ее состояние будет неопределенным. На ножку, работающую в режиме вывода, не должны нагружаться внешние источники токов («монтажное И», «монтажное ИЛИ»). Большие результирующие токи могут повредить кристалл. Необходимо выдерживать определенную последовательность обращения к портам ввода/вывода. Запись в порт вывода происходит в конце командного цикла. Но при чтении данные должны быть стабильны в начале командного цикла. Будьте внимательны в операциях чтения, следующих сразу за записью в тот же порт. Здесь надо учитывать инерционность установления напряжения на выводах. Может потребоваться программная задержка, чтобы напряжение на ножке (которое зависит от нагрузки) успело стабилизироваться до начала исполнения следующей команды чтения.
|
||||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 384; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.86.134 (0.008 с.) |